

Introduction	 to	 expressions	
In computer programming an EXPRESSION can be either mathematical or logical. All expressions are
EVALUATED.
Evaluating a MATHEMATICAL EXPRESSION generally follows the same rules you learned in math, but the
result is usually assigned to a variable.
When evaluating a BOOLEAN EXPRESSION the result is always either “True” or “False”. This is usually
the result of comparing a combination of constants (such as simple numbers), the values of variables,
and also mathematical expressions, using a relational operator such as greater or less-than.
Greater-than and less-than are both relational operators because they compare to values. Other
relational operators include “greater-than or equal to” (written >=), less-than or equal to (written <=),
equal to (written ==) (YES, two equals signs!), and not equal to (written !=).

Using	 mathematical	 expressions	
Mathematical expressions are frequently used when assigning a new value to a variable.
For example:
var x = 3 * 5 + 2
Uses the mathematical expression 3 times 5 plus 2 to assign the value 17 to the variable x.
Mathematical expressions can also include variables of course (remember, x now has the value 17):
var y = (x – 1) / 2
In order to evaluate this mathematical expression, we substitute the current value of x so we get:
var y = (17 – 1) / 2
So the variable y gets the value 8.

Using	 Boolean	 expressions	
Boolean expressions can also be assigned to variables, but in that case they will be either true or
false:
var b = 5 < 10
The variable b now has the value true because 5 is less than 10.
Just like mathematical expressions, Boolean expressions can contain variables:
var c = x < y
Using the current values of x and y:
var c = 17 < 8
So c is false because 17 not less than 8!

The	 Logical	 or	 Conditional	 Operators	
We are all familiar with mathematical operators such as + and -, but there is also a class of operators
known as the logical operators. Logical operators are only used to compare Boolean values. There
are really only two logical operators AND and OR.
In JAVA, the "AND" operator is written && and the "OR" operator is written ||.

The	 “AND”	 Operator:	 &&	
The “AND” operator evaluates as “true” if both sides of the operator are “true,” thus (1 < 2) && (2 == 2)
is “true” because (1 < 2) is “true” and (2 == 2) is “true.”

The	 “OR”	 Operator:	 ||	
The “OR” operator evaluates as “true” if either sides of the operator are “true,” thus (10 < 0) || (5 > 4)
is "true" because (10 < 0) is “false” but (5 > 4) is “true.”

Using	 the	 	 “AND”	 and	 “OR”	 Operators:	
The logical operators can be used in variable assignments as part of a Boolean
expression (using our variables values from before):
var d = b && c
Substituting our current variable values, the expression is evaluated as:
var d = true && false
For the result of an && operator to be true, both sides must be true, and in this case,
only one side is true, so d is false.
Now let’s look at a logical expression using the OR operator:
var e = b || c
Substituting we get:
var e = true || false
For the result of an || operator to be true, either side can be true, and in this case, at least one side is
true, so e is true.

Compound	 Expressions:	
A compound expression simply combines multiple expressions using the order of precedence. When
combining mathematical and logical (or conditional) expressions, always evaluate the mathematical
expressions first!
Analyze the expression when i=4 and j=2.

Original Expression: (i * j > i + j && j - i > 0) || (j < 0)

Substitute values: (4 * 2 > 4 + 2 && 2 - 4 > 0) || (2 < 0)

Evaluate mathematical operators: (8 > 6 && -2 > 0) || (2 < 0)

Evaluate Inner-Boolean operators: (True && False) || (False)

Evaluate outer-Boolean operator: (False) || (False) = False

Try analyzing the expression when i=2 and j=-2.

Original Expression: (i * j > i + j && j - i > 0) || (j < 0)

Substitute values: (* > + && - > 0) || (< 0)

Evaluate mathematical operators: (> && > 0) || (< 0)

Evaluate Inner-Boolean operators: (&&) || ()

Evaluate outer-Boolean operator: () || () =

Now analyze the expression when i=2 and j=-5.

Original Expression: (i * j > i + j && j - i > 0) || (j < 0)

Substitute values: (* > + && - > 0) || (< 0)

Evaluate mathematical operators: (> && > 0) || (< 0)

Evaluate Inner-Boolean operators: (&&) || ()

Evaluate outer-Boolean operator: () || () =

Prior Variable
Values

Variable Value
x 17
y 8
b true
c false

