

Evaluating	 expressions	 as	 part	 of	 Loops:	
When writing a CONDITIONAL STATEMENT for a loop, you must also use a Boolean expression. In a loop, the code
inside the loop will continue to execute repeatedly as long as the Boolean expression evaluates as true.
Lets look at several examples of Boolean expressions using the variables on the right:

Loop using relational operators:
while (i < 5)
 i = i + 2;
We need to observe the loop through multiple iterations. Since the same code will be executed many times, we
will evaluate the Boolean expression each time, then, if the loop continues, record the change in any variables:

Code 1st Iteration 2nd Iteration 3rd Iteration 4th Iteration
while (i < 5) (0 < 5) -> (true) (2 < 5) -> (true) (4 < 5) -> (true) (6 < 5) -> (false)

 i = i + 2; i = 0 + 2 -> i = 2 i = 2 + 2 -> i = 4 i = 4 + 2 -> i = 6 Skipped

Conditional expression using relational operators and mathematical expressions:
while (i * 2 < i + j +1) {
 i = i + 2;
 j = j + 1;
}
This time, the loop contains two statements to execute, so we need a code block (curly braces) to group our statements together:

Code 1st Iteration 2nd Iteration 3rd Iteration
while (i * 2 < i + j) { (0 * 2 < 0 + 1 + 1) -> (0 < 2) -> (true) (2 * 2 < 2 + 2 + 1) -> (4 < 5) -> (true) (4 * 2 < 4 + 3 + 1) -> (8 < 8) -> (false)

 i = i + 2; i = 0 + 2 -> i = 2 i = 2 + 2 -> i = 4 Skip

 j = j + 1; j = 1 + 1 -> j = 2 j = 2 + 1 -> j = 3 Skip

}

Loops can also be based on logical operators of course, but they most often use relational operators so that is where we will focus our
attention!

IN

Assume these
variables

Variable Value
i 0
j 1

