
 

JAVA	  Types	  in	  the	  AP	  Subset:	  
First let us review the 4 primitive data types covered in the AP JAVA subset: 

• int – A whole number (or integer) ranging from -2,147,483,648 to 2,147,483,647. 
• double – A floating point number with a VERY big range. 
• boolean – Must be either true or false. 
• String – A collection of alphanumeric characters. 

 
When we assign a value to a variable, the value assigned must match the type of the variable. For 
example: 
boolean b=true; 

This statement is okay because the variable b has the type boolean and it is assigned the literal value 
true. But what happens if the types don't match: 
boolean b=5; 
The literal value 5 has the type int because it has no decimal, so it cannot legally be assigned to the 
variable b because it is a boolean variable! 
In general the type of value assigned to a variable must match the type of the variable itself. 

Widening	  Conversion:	  
JAVA, like most programming languages, allows variable types to be changed through a process 
called TYPE CONVERSION. 
The first kind of type conversion we will examine is WIDENING PRIMITIVE CONVERSION. This is an 
automatic conversion from a more limited primitive data type to a “wider” primitive type. A wider 
primitive type is one that can store the information of another type without the loss of any information. 
Thus, a double is a wider primitive data type than an int, so it is legal to write: 
double d=5; 

Because 5 is an int literal, but a double can hold the value represented by an int without losing data. 
The variable d has the value 5.0! 
However, trying to convert from a double to an int automatically is not allowed. For example: 
int i=5.5; 

This statement is not allowed because the .5 portion of the double literal value 5.5 would be lost if the 
value were converted to an int! 

JAVA LITERALS: 
A literal is a value represented directly in your code. You have seen literals used frequently 
when assigning an initial value to a variable: 
int x=5; 
The number 5 is an int literal. 
double y=5.0; 
Since the literal value 5.0 has a decimal in it, it has the type double. 
A boolean variable must have either the literal value true or false. 
String s="5.0"; 
Since the literal value "5.0" has quotes around it, it is a String literal. 
 



Conversion	  in	  Expressions:	  
An automatic type conversion can also occur as part of an expression. For example: 
double d=5 + 1.2; 

In this statement we have two primitive literals. The first is 5, an int literal and the second is 1.2 that is 
a double literal. In order to add these two literal values, the int literal 5 will first be converted to the 
wider double literal value 5.0. Then the expression can be evaluated because all the types involved 
match. Finally, the resulting value 6.2 will be assigned to the variable d! 

String	  Conversion	  in	  Expressions:	  
A String conversion will occur if the value on either side of the + operator is a String type: 
String s=5 + "1.2"; 

Again, in this statement we have two primitive literals. The first is 5, an int literal and the second is 
"1.2" that is a String literal. In order to add these two literal values, the int literal 5 will first be converted 
to a String literal value "5". Then the expression can be evaluated because all the types involved 
match. The process of “adding” two String literals is called concatenation. In this example the 
resulting String literal value "51.2" will be assigned to the variable s. 
String conversions can be confusing, so let's look at a few examples: 
String a="One" + 2 + "Three"; 
Using substitution we can see that the expression "One" + 2 + "Three" will require that the int literal 2 be 
converted to a String so it reads: 
"One" + "2" + "Three" 
Now the three String literals can be combined into "One2Three". 

Multiple	  Conversion	  in	  Expressions:	  
Conversions occur left to right as the expression is evaluated. 
Let's look at a complex expression including several conversions: 
String b=1 + 1.0 + "Two" + true; 
In this example, we first add the int literal 1 and the double literal 1.0, so the 1 is widened through 
conversion to 1.0 then added to the double literal 1.0 resulting in the double literal value 2.0. Next the 
double literal value 2.0 will be converted to a String because there is a String literal after the + operator 
so we have "2.0"+"Two" giving us the String literal "2.0Two". Next the boolean literal true must be combined 
with the String literal "2.0Two" so the boolean literal is converted to the String literal value "true" and 
combined with the String literal "2.0Two" so we have the final String literal "2.0Twotrue" that is assigned to 
the String variable b. 

Casting	  Conversion:	  
A variable can be forced to convert from one type to another through the process of CASTING. 
To force a type to cast, the type you want it become is put in parenthesis before the expression: 
int g=(int)5.5; 
In this example, the double literal 5.5 is cast into an int. When a double is cast into an int, only the 
integer portion of the double is kept, so g is assigned the int literal 5. 
For now, the only two variable types that can be safely cast are a double into an int (like the example 
above) or an int into a double (though this is usually not necessary since expansion will occur 
automatically. 
Example: 
int h=(int)(10 * 5.25); 
The parenthesis cause the expression to be evaluated first, so the int literal 10 is converted into the 
double literal 10.0 that is then multiplied by 5.25 resulting in a double value of 52.5. Then the casting turns 
the double value 52.5 into the int value 52 which can be safely assigned to the int variable h. 


