
Assignment 1: Random Number Generator

Testing parameters that may cause ORIGINAL method to misbehave

Does the method work when max>min and both max and min are positive?

Sample console min=1 max=10 (3 trials) :

9 1 1
5 8 6
7 10 10
4 2 7
6 6 6
10 10 5
2 9 6
7 7 8
5 8 1
1 10 9

After running multiple trials, the distribution of numbers appears to be random and contains both the
max and the min. Given these parameters of the min and max, the ORIGINAL method is behaving as
expected.

Will the method still work if we choose a negative number for min and for max?

Sample console output when max= -1 and min= -10:

-7 -3 -5
-1 -7 -1
-4 -7 -5
-8 -9 -5
-6 -10 -4
-9 -5 -7
-6 -9 -2
-3 -5 -10
-6 -1 -2
-3 -10 -3

After running multiple trials, the distribution of numbers appears to be random and includes both the
min and max. Given these parameters of the min and max, the ORIGINAL method is behaving as
expected.

What will happen if max is less than min?

Sample console output when max=5 and min=10

10 8 9

10 8 8
8 7 7
10 9 10
10 10 10
8 8 9
10 7 8
8 10 9
10 9 9
7 10 8

When max is less than min, this method misbehaves and does not give an even distribution of
numbers over the range and never includes the min or values near it.

What will happen if the min and the max are the same?

Sample console output when min=max=1

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

When min=max the same number is output every time (whatever min and max are set equal to).
While this does defeat the purpose of generating a random number this still does not count as method
misbehavior. Given that the user wanted a random number in the range given the computer still
fulfilled its mission and randomly generated a number within the given range. In some circumstances
and uses of this method, it may be desirable to produce this response (such as in a game where
under a given circumstance there is only one option for an a.i's response that in other cases is
random) therefore it would have negative effects to change the method in order to avoid this result.

Given these results the method only misbehaves when min>max

This occurs because the calculation for the range assumes the initial difference between the max and
the min will be positive. Since this is not the case under these circumstances, by adding one to the
difference between the max and the min a result with an absolute value 2 too low is generated for
range(in this case prohibiting 5 and 6 from ever being displayed). In order to remedy this method max
and min will be substituted with variables to and from and an if statement will be added to make the
relative values of to and from irrelevant. In line 15 the statement as follows will be added:

int range=from-to+1;
 if(to>from){
 range=from-to-1;

 }
This line will account for the possibility that to can be greater than from allowing, a proper value for range to be
calculated (albeit negative). By utilizing a negative value for the range and subtracting portions of this value
from the larger value (the opposite process of the original code that failed under these circumstances). The
new method will give random numbers across the entirety of the range specified for any two real integers.

Tests to prove the NEW method functions as expected (to is substituted for min and from is substituted for max
however with the new code a distinction in value is not necessary)

Does the method work when from>to and to and from are positive?

to=1, from=10

2 3 4
9 5 10
10 4 5
3 8 1
4 9 9
8 1 2
10 3 1
1 10 10
3 6 4
2 5 4

Under these parameters the new method works as expected.

Will the method still work if we choose negative values for min and max?

to=-10 from=-1

-4 -9 -10
-6 -4 -2
-10 -8 -9
-4 -6 -1
-7 -8 -1
-9 -9 -8
-1 -10 -7
-4 -4 -10
-9 -6 -4
-3 -9 -3

Under these parameters the new method works as expected.

What will happen if from is less than to?

to=10 from=5

9 5 7
5 9 10
6 7 6

5 5 10
9 10 5
5 7 9
6 9 6
5 8 8
10 6 6
6 8 7

Under these parameters (which caused the original method to misbehave) the new method works as expected.

What will happen if to and from are the same?

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

As previously concluded, this result is consistent with the methods mission and therefore does not constitute
method misbehavior.

The new method fixes the issues with the original method. .java file for the new method here:

//First Last
//Random Number Project
//A method that generates a random number within a user created range
//9/16/13
public class assignment1RandNumProject {
 public static void main(String[] args) {
 int i=0;
 while (i<10) {
 int r=randNumber(10,5);
 System.out.println(r);
 i++;
 }
 }
 public static int randNumber(int to, int from) {
 int range=from-to+1;
 if(to>from){
 range=from-to-1;
 }
 int rand=(int)(Math.random()*range);
 int result=rand+to;
 return result;

 }
}

