

A nested loop simply means that a one loop, usually referred to as the “inner loop,” is located within
the code block of another loop, usually called the “outer loop.”
While this concept is simple enough, the interactions between the inner and outer loops can lead to
very complex behavior!
In JAVA, each loop can be either a “while” or a “for” loop.
A simple example looks like this:
Program:

Console Output:

Looking at the console output closely, you might notice that every combination of outer and inner
values is represented once. In other words, for each value of outer from 1 to 3, inner also has the
value of 1 to 3. This means that the inner loop iterates a total of 9 times. This is true because the
inner loop iterates 3 times for each time the outer loop iterates and the outer loop iterates 3 times!
It is important to be able to recognize when it makes sense to use nested loops to solve a problem.
For example, if you were trying to get the following console output, then the program on the right
would work:
Console Output:

Program:

But is this code efficient?
What will happen if the
pattern we want changes,
to have 99 lines with the
numbers 1 through 10 in
them?
Using a loop will add
flexibility.
 The same program could be written using a loop as:

Program:

Console Output:

In this version of the
program it would now be
easy to have 99 lines
instead of just three. Simply
changing the for loop
condition to a<=99 is all it
would take!

However, it still does not provide the flexibility to easily change the range of numbers displayed on
each line. In order to get that flexibility we need to use a “nested” loop!

public class NestedLoopsExample1 {
 public static void main(String[] args) {
 for (int outer=1; outer<=3; outer++) {
 for (int inner=1; inner<=3; inner++) {
 System.out.println("outer="+outer+", inner="+inner);
 }
 }
 }
}

outer=1, inner=1
outer=1, inner=2
outer=1, inner=3
outer=2, inner=1
outer=2, inner=2
outer=2, inner=3
outer=3, inner=1
outer=3, inner=2
outer=3, inner=3

123
123
123

public class NestedLoopsExample2 {
 public static void main(String[] args) {
 System.out.println("123");
 System.out.println("123");
 System.out.println("123");
 }
}

public class NestedLoopsExample3 {
 public static void main(String[] args) {
 for (int a=1; a<=3; a++) {
 System.out.println("123");
 }
 }
}

123
123
123

Since we want both the number of rows to be easily changed and the digits represented in each row
to also be easily changed, we will replace the simple System.out.println("123"); with a loop that
prints the digits we want for each row:
Program:

Console Output:

This version of the program
makes it easy to change
both the number of rows to
output and the digits printed
on each row.
To get 1 through 10 output
99 times would only require
changing the outer loop’s
conditional expression to
a<=99 and the inner loops
conditional expression to
b<=10.
 Furthermore, if the desired console output was more complex, the relative values of the outer and

inner loops can be used. For example, taking advantage of both the inner and outer loop variables
can generate the pattern below:
Console Output:

Program:

Notice that two lines of
code have been changed.
First the outer loop variable
is initialized to 0 instead of
1 and the loop condition
has been changed to a<=2.
Secondly, the console
output has been altered so
that the current values of
the variables a and b are
added together!

After deciding to use a nested loop, figuring out the correct initial values to use for the loop variable,
the loop condition, and the loop variable modifier for an outer and inner loop is the real challenge.
If the desired pattern is:

Then first decide upon the outer loop’s initial value. Since the rows start 9, 6, and 3, and
there are three rows, it makes sense to start the outer loop variable with a value of 9, and
then reduce it by 3 on each iteration while it is greater than or equal to 3:
for (int r=9; r>=3; r=r-3).

Now it is time to decide what values to use for the inner loop. In this case, first it is clear that the loop
must iterate 3 times. Next an initial value for the inner loop needs to be chosen. If this value is going
to be combined with the outer variable’s
value, then the inner loop’s initial value must
be 0 so the first digit of each line maintains
the pattern. Only the amount to modify the
inner loop variable by remains. Having this
value decrease by 1 each iteration allows
the two loop variable’s values to be added
to get the desired output:
for (int c=0; c>=-2; c--).

public class NestedLoopsExample4 {
 public static void main(String[] args) {
 for (int a=1; a<=3; a++) {
 for (int b=1; b<=3; b++) {
 System.out.print(a);
 }
 System.out.println();
 }
 }
}

123
123
123

123
234
345

public class NestedLoopsExample5 {
 public static void main(String[] args) {
 for (int a=0; a<=2; a++) {
 for (int b=1; b<=3; b++) {
 System.out.print(a+b);
 }
 System.out.println();
 }
 }
}

987
654
321

public class NestedLoopsExample6 {
 public static void main(String[] args) {
 for (int r=9; r>=3; r=r-3) {
 for (int c=0; c>=-2; c--) {
 System.out.print(r+c);
 }
 System.out.println();
 }
 }
}

