

There are often times when it would be convenient to be able to work with a series of variables that
are very similar to make it easier to process them. One mechanism for accomplishing this is the
ARRAY. An Array is a list of variables that are all the same type. Arrays have rules regarding how they
are created and used, but are mostly just another type of variable.
Let's look at an example of why an Array would be useful:

Creating a list of names with each variable having a different name
in it without using arrays would look like this using a separate

variable for each String:
And in order to print each String variable the code would look like

this:
It should be easy to see that this system becomes very untenable if
10, 20, or 10,000 names are needed!
Arrays allow us to use a slightly more convenient system for both
creating and using a list of variables that are all the same type.
First, we can use a convenient shorthand system for creating and filling the Array with all the names
at once:
Let us examine this statement in detail:
Like any variable, first we must specify the type. In this case, we first indicate we are making a String
variable, but then we use the [] characters, known as square braces to indicate it is an Array of
Strings, so we have the type: String[].
Just as with all other variables, the variable name comes next. Since this is not just one name but an
Array where each element is a name, calling the variable names helps us remember it is an Array.
After the variable name we usually assign the variable an initial value. In this case we are using a
JAVA convention to fill the Array with the values “Adam”, “Becky”, “Charlie”, and “Dennis” using the
syntax of curly braces then a list of values. Since this is an Array of Strings each value must be a
String so we must put each value in quotes.
If we were to draw a picture of the two ways we created our variables it would look like this:
Without using Arrays:

Variable Name Value
name1 "Adam"
name2 "Becky"
name3 "Charlie"
name4 "Dennis"

Using Arrays:
Array Name Index Full Variable Name Value
names 0 names[0] "Adam"
names 1 names[1] "Becky"
names 2 names[2] "Charlie"
names 3 names[3] "Dennis"

From this point on, an Array will be summarized by indicating the Variable
Type and Name above the data summary with the index and values in the
table. For the current example it looks like this:
How do I use an array in my program?
Since the variable "names" is actually a list of 4 String variables, we need
to indicate which one we want when we wish to use it in a program. To
output the first and last names in our list to the console we can write:

Which generates this console output:

String name1="Adam";
String name2="Becky";
String name3="Charlie";
String name4="Dennis";

System.out.println(name1);
System.out.println(name2);
System.out.println(name3);
System.out.println(name4);

String[] names={"Adam","Becky","Charlie","Dennis"};

System.out.println(names[0]);
System.out.println(names[3]);

Adam
Dennis

String[] names
index Value
0 "Adam"
1 "Becky"
2 "Charlie"
3 "Dennis"

So, how do Arrays help us?
Once an Array is filled with data, we can now use
other structures we are familiar with to help us
process it. For example, printing the values in the
Array can be accomplished using a loop to
change the index of which Name we want to print.
By changing the index variable i from 0 to 3, we can output all the names:
Arrays also include a way to find out how many elements there
are in the Array by writing arrayName.length. In our example,
we can store the number of elements in the Array by assigning it
to an integer. In this case, if we output this value to the console
we will see the number 4 because there are four names in our list. Note that the index of the first
element is always 0, therefore the index of the last element is one less than the length of the array!
We can use the length of the array when designing our “for
loop” to make it more robust. A for loop that is written
using a set size can't easily be changed, but by calculating
the array's length in the loop, the code will still work if we
go back and add more elements to it.

A more compact way to write the loop looks like this:
Notice that we've also changed the code by using "less
than" rather than "less than or equal to" and then
subtracting one.
Examine the code below:

Which generates the following
console output:

Written in this manner, the program will work correctly regardless of how many elements we add to
the array:

Output:

Here are some examples of creating arrays of other primitive data types:

public class ArrayIntroduction2 {
 public static void main(String[] args) {
 String[] names={"Adam","Becky","Charlie","Dennis"};
 for (int i=0; i<names.length; i++) {
 System.out.println(names[i]);
 }
 }
}

Adam
Becky
Charlie
Dennis

public class ArrayIntroduction2 {
 public static void main(String[] args) {
 String[] names={"Adam","Becky","Charlie","Dennis","Edith"};
 for (int i=0; i<names.length; i++) {
 System.out.println(names[i]);
 }
 }
}

Adam
Becky
Charlie
Dennis
Edith

int[] arr1={1,2,3};
double[] arr2={.5,1,1.5};
boolean[] arr3={true,false,true};

int[] arr1
index Value
0 1
1 2
2 3

double[] arr2
index Value
0 .5
1 1.0
2 1.5

boolean[] arr3
index Value
0 true
1 false
2 true

for (int i=0; i<=3; i++) {
 System.out.println(names[i]);
}

int elements=names.length;
System.out.println(elements);

int elements=names.length;
for (int i=0; i<=elements-1; i++) {
 System.out.println(names[i]);
}

for (int i=0; i < names.length; i++) {
 System.out.println(names[i]);
}

Adam
Becky
Charlie
Dennis

Declaring	 Arrays	
So far all the arrays have been created using shortcut
syntax with curly braces:

The more formal method of declaring an array uses this syntax:

So declaring a String array with 10 elements use this syntax:

Just like before, the type can be int, double, boolean, String, or other
type. The array has num elements in it, and the initial value of each element
depends upon the type. The table to the right shows the initial value in an
array of each type.
NOTE: Other primitive data types and objects also have default values (not shown).

Type Initial Value
int 0
double 0.0
boolean false
String null

Generally speaking however, it is considered “best practice” to assume that an array declared using
this syntax has null or unknown values and should therefore be “initialized” explicitly before being
used.
At this point you may be wondering what the value NULL means. In JAVA null is a reserved word that
means that the variable in question has “no value.” Variables like String that are Objects in JAVA
have no value until they are assigned one. Until that time, they are said to be null, or have a null
value.
In the case of String variables, don't confuse null with empty. Look at the code and output below:

Output:

Notice that the element at index 2 is the only one that doesn't output the value null. Arrays with null
elements can be very tricky because they can easily trigger “NULL POINTER EXCEPTIONS.” A null pointer
exception occurs when you try to use a method on an object such as a string that has a null value.
The line of code arr[i].equals("Hello")
generates an error because arr[0] has
the value null so the equals method
cannot be used. For this reason, it is
always a good idea to initialize the values
of your arrays to a known value using a
for loop like:

This guarantees that no element in the
array has the value null.

type[] varName={value1,…,valuen};

type[] varName=new type[num];

String[] names=new String[10];

public class NullEmptyString {
 public static void main(String[] args) {
 String[] arr=new String[5];
 arr[2]="";
 for (int i=0; i<arr.length; i++) {
 System.out.println("i["+i+"]=" + arr[i]);
 }
 }
}

i[0]=null
i[1]=null
i[2]=
i[3]=null
i[4]=null

for (int i=0; i<arr.length; i++) {
 arr[i]="";
}

Exception in thread "main" java.lang.NullPointerException
 at NullEmptyString.main(NullEmptyString.java:6)

public class NullEmptyString {
 public static void main(String[] args) {
 String[] arr=new String[5];
 arr[2]="Hello";
 for (int i=0; i<arr.length; i++) {
 if (arr[i].equals("Hello")) {
 arr[i]="Hello";
 }
 System.out.println("i["+i+"]=" + arr[i]);
 }
 }
}

Initializing	 Numeric	 Arrays	
Numeric arrays using int and double have the value 0 in all elements after being declared. It is
often useful to fill such an array with values. For example, having the first element in the array start
with one and each element after go up by one.

Output:

Limits	 and	 Restrictions	 to	 Arrays:	
When using arrays there are some limits and restrictions that must be observed.
First, an array must contain all elements that are the same type of variable:
These are all valid array declarations:

 Below is output that would result from each:

Each of these arrays can have all their values output
to the console using the same code:

Output with:
arr={"One","2","Three","4"}

Output with:
arr={1,2,3,4}

Output with:
arr={1.0,2,3.5,4}

None of these are valid array declarations:

arr1 is a String array so each of it's elements must
be a String. In the declaration
arr1={"One",1,Two,"3"}, the second and third
elements don't have quotes around them so they
aren't Strings.

arr2 is an int array so each of it's elements must be
an int. In the declaration arr2={1,"2",3.5,4},
element 2 is a String, and element 3 is a double.

arr3 is a double array so each of it's elements must
also be a double. In the declaration
arr3={1.0,"2.0","3",4}, elements 2 and 3 are
Strings. Element 4 is okay because it is converted
automatically to 4.0.

public class InitializeNumericArray {
 public static void main(String[] args) {
 int[] arr=new int[5];
 for (int i=0; i<arr.length; i++) {
 arr[i]=i+1;
 }
 for (int i=0; i<arr.length; i++) {
 System.out.println("i["+i+"]="+arr[i]);
 }
 }
}

i[0]=1
i[1]=2
i[2]=3
i[3]=4
i[4]=5

String[] arr={"One","2","Three","4"};
int[] arr={1,2,3,4};
double[] arr={1.0,2,3.5,4}; for (int i=0; i<arr.length; i++) {

 System.out.println(arr[i]);
}

One
2
Three
4

1
2
3
4

1.0
2.0
3.5
4.0

String[] arr1={"One",1,Two,"3"};

int[] arr2={1,"2",3.5,4};

double[] arr3={1.0,"2.0","3",4};

Restriction:	 Arrays	 are	 fixed	 length	
Once you have declared an area with a number of elements you cannot add new elements to it or
remove elements from it, but you can replace an array with another array that has a different size.
See the example below:

In the example above, the first array is replaced with a second array that has more
elements than the original array.

Output:

Restriction:	 Arrays	 are	 “bounded”	
The other important restriction when working with arrays is that you can only refer to array elements
that exist. If an array has only four elements in it then trying to access the fifth element with generate
an array index out of bounds error.
See the below for the most common example of how this occurs:

Generates this console output:

This code generates the ArrayIndexOutOfBoundsException because the index variable i increases by
one until it is less than or equal to names.length which is 5. But the first element in the array has an
index of 0 and the last an index of 4 so trying to access the element at array index 5 generates the
exception.
The line of code that generates the error is:

It should read:

public class ReplaceArray {
 public static void main(String[] args) {
 String[] names={"Ann","Barbara","Chuck"};
 String[] names2={"Fred","Wilma","Pebbles","Barney","Betty","Bam-Bam"};
 System.out.println("BEFORE:");
 for (int i=0; i<names.length; i++) {
 System.out.println(names[i]);
 }
 names=names2;
 System.out.println("AFTER:");
 for (int i=0; i<names.length; i++) {
 System.out.println(names[i]);
 }
 }
}

BEFORE:
Ann
Barbara
Chuck
AFTER:
Fred
Wilma
Pebbles
Barney
Betty
Bam-Bam

public class ArrayIndexOutOfBounds {
 public static void main(String[] args) {
 String[] names={"Ann","Betty","Chuck","Dale","Ethan"};
 for (int i=0; i<=names.length; i++) {
 System.out.println("i=" + i + ": names["+i+"]=" + names[i]);
 }
 }
}

i=0: names[0]=Ann
i=1: names[1]=Betty
i=2: names[2]=Chuck
i=3: names[3]=Dale
i=4: names[4]=Ethan
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 5
 at ArrayIndexOutOfBounds.main(ArrayIndexOutOfBounds.java:5)

String names[]
index Value
0 "Ann"
1 "Betty"
2 "Chuck"
3 "Dale"
4 "Ethan"

for (int i=0; i<=names.length; i++) { for (int i=0; i<names.length; i++) {

This line of code "erases" the
Array information stored in
names. From this point on,
names and names2 are the
same array. Changing any
part of one, changes both

because there aren't actually
two arrays anymore!

