

In Part I of Working with Arrays the algorithms for outputting an array to the console or returning it as
a String as well as adding and removing an element from an array we presented. Part II will present
the algorithms and pseudo code for working with arrays to accomplish the remaining tasks:

• Searching for a value in the array
• Searching an array for a maximum or minimum value
• Moving elements within the array, the most common operation involves “swapping” two

elements
• Merging two arrays

In each case, the goal is to write a method for the algorithm.

Searching	
 an	
 Array	

Before considering the algorithm for searching an array, consider the result of such a search. Using
the example names array, if the value to be searched for was “Dennis” then the result of such a
search could have several different forms.
String[] names={"Adam","Becky","Charlie","Dennis","Ethan","Fred","Gary","Heath"};
The value searched for, “Dennis,” could be returned, but that wouldn’t be terribly useful since the
value was already known, after all it was the search value. All we would know in that case is that the
value existed. A simple boolean result could be returned, the value was either in the array or it wasn’t.
Instead, a more useful piece of information would be the index of the array element where the value
was found! If the value isn’t in the array, then a value that would not normally be returned can be
returned instead. This is how the String method .indexOf() works. When the value can’t be found
in the string, -1 is returned because it isn’t a possible index.
Below is a summary of the information about the method to be written:
Method Attribute Description JAVA
Return Type Returning an array index int
Method Name This method will search an array for a value searchLinear
1st Parameter The value to search for, or find String s
2nd Parameter The array to search, using a generic name String[] arr
Return value(s) If the string to be found is in array, return the index 0 to array.length-1
 If the string to be found isn’t in the array, return -1 -1
With this information the method signiature can be written:
public static int searchLinear(String s, String[] arr)
Recall that the proper way to compare two String values for equality is the .equals() method
instead of the == operator. However, this will introduce possible complications. Recall as well that a
String may have the special value null , in which case trying to use the .equals() method will
generate a “NullPointerException” so it is important to first make sure that each String is not
null before trying to use the .equals() method.
Such a test can be written as a simple “if” statement:
if (find==null)
If the value to find, stored in s variable is null , then a separate kind of equality test can be
performed to see if the array value is also null !
Comparing s to each value in the array inside a “for loop” will complete the LINEAR SEARCH algorithm.

PART II

Here is the complete pseudo-code:
1. Get the value to find and the array as parameters.
2. If the array is null return -1.
3. Loop over each value in the array.
4. If the array element is the same as the value to find, return the current array index.
5. If the end of the loop is reached, then the value isn’t in the array, so return -1.

The method signature is:
int searchLinear(String s, String[] arr)
Assume an array: letters={"A","B","C","D"};
And a call to the method index=searchLinear("C", letters):
Use Chart D to follow this process step by step for the sample method call:
Step 1: Get the array value
arr={"A","B","C","D"};
s="C";
Step 2: arr is not null so do nothing.
Step 3: Set up the iterator loop.

Step 4: Return the current iterator index if s is equal to the array element at the iterator index.
In this example, when the iterator reaches 2, arr[iterator] will equal s so the value 2 will be
returned.
Step 5: Return the value negative one if the end of the loop is reached.
This does not occur in this example.
Now follow the same algorithm for three examples:
Step

Searching for a value that

isn’t in the array Searching for a null value Searching for a null array

1 arr={"A","B","C","D"};
s="E";

arr={"A",null,"C","D"};
s=null;

arr=null;
s="D";

2 arr is not null, do nothing arr is not null, do nothing arr is null, return -1
3 Set up the iterator loop Set up the iterator loop Not Reached

4 s never equals an array value

s is null, so use the ==
operator to compare it to each
element of the array, and
return the index of 1 because
that array element is null

Not Reached

5 Return -1 Not Reached Not Reached

Checking for equality when the variable might be null is tricky because you have to make sure the
variable isn’t null as your first step.
The code to check for equality when a variable might be null looks like this (using the same variable
names from the example):
if(s==null && arr[iterator]==null) {

return iterator;
} else if (s.equals(arr[iterator])) {

return iterator;
}
When null values are not possible the code is much simpler:

if (s==arr[iterator]) return iterator;

Chart D
String[] arr

index Value
0 "A"
1 "B"
2 "C"
3 "D"

Searching	
 an	
 Array	
 for	
 a	
 Minimum	
 or	
 Maximum	
 Value	

It will be easier to consider searching for a min or max value considering numbers,
but the process can be applied to String arrays as well.
Now examine a new data set for this example, an int array called numbers:
int[] numbers={12,15,11,9,10};
A quick glance at the table reveals that the smallest value, “9,” is stored at index 3.
However, if this array contained a list of a million numbers, it would take much more
than a glance to establish what the smallest value was in the list.
In such a case, an algorithm would make more sense!
Use the Chart E to follow this process step by step:
Begin by assuming the first value in the list, the one at
index 0, is the smallest value.

Now compare the value stored at the current low index of 0
with the one stored at index 1. Since the value stored at
index 0 is less than the value at index 1, index 0 remains
the low index.

Next compare the value stored at the current low index of 0 with the one stored at index 2. Since the
value stored at index 0 is greater than the value at index 2, index 2 becomes the new low index.

Then compare the value stored at the current low index of 2 with the one stored at index 3. Since the
value stored at index 2 is greater than the value at index 3, index 3 becomes the new low index.

Finally, compare the value stored at the current low index of 3 with the one stored at index 4. Since
the value stored at index 3 is less than the value at index 4, index 3 remains the new low index.
Notice that each of the comparison steps followed the same procedure, only the indexes to be
compared each time changed. The first index, the current low index could easily be considered a
variable and the second the second index is simply a loop iterator that starts at 1 and ends at end of
the array!
This is how a LINEAR SEARCH algorithm works. Why record the index instead of the actual number?
The answer once again is a question of getting the maximum information possible. If you have the
index you can get the value, but if you only have the value it is impossible to know the index too.
Now that the algorithm has been analyzed consider the method header, also known as a METHOD
SIGNATURE. Just like searching for a matching value, we can construct a table to help analyze the
method:
Below is a summary of the information about the method to be written:
Method Attribute Description JAVA
Return Type Returning an array index int

Method Name This method will return the index of the lowest
value in the array indexMin

Parameter The array to search, using a generic name int[] arr
Return value Index of the element with the lowest value 0 to arr.length-1

Notice that there are a few differences from the searchLinear method. The return type will still be an
int because an array index value will be returned, but there is only one parameter, the int array.
Some index value will always be returned there is always a smallest value!

The method signature is: int indexMin(int[] arr)

int[]
numbers

index Value
0 12
1 15
2 11
3 9
4 10

Chart E: Finding a Minimum
index Value Low

Index
Low

Value Compare Next Low
Index

Next Low
Value

0 12 0 12 Assume 0 12
1 15 0 12 12<15 0 12
2 11 0 12 11<12 2 11
3 9 2 11 9<11 3 9
4 10 3 9 10<9 3 9

Swapping	
 Values	
 in	
 an	
 Array	

Consider the data set of the double array called numbers:
double[] numbers={1.2,1.5,1.1,1.0};
To swap two elements of the array a simple algorithm can be
followed:

1. Store the value of the first element in a temporary variable.
2. Assign the value of the second element to the first element.
3. Assign the value of the temporary variable to the second

element.
A method to accomplish this with any two element indexes would require just a bit more work
because it should work with any array and it should check to make sure it is legal to swap the desired
elements so an “ArrayIndexOutOfBoundsException” exception is not thrown.
Below is a summary of the information about the method to be written:
Method Attribute Description JAVA

Return Type A boolean value indicating that the swap was
performed successfully. boolean

Method Name This method will swap the values of two elements. swap
Parameter(s) The array in which the swap will take place. int[] array
 Index of the first element int indexA
 Index of the second element int indexB

Return value true only if both indexA and indexB fall in the
range 0 to array.length-1 true or false

The method signature is:

boolean swap(int indexA, int indexB, int[] arr)

Creating	
 an	
 Array	
 by	
 combining	
 two	
 Arrays	

The algorithm for combing two arrays is actually quite simple:

1. Create a new array with a size equal the combined length of the two arrays.
2. Use a loop to assign elements from the first array to the new array using the same indexes

until the end of the first array.
3. Use a second loop to assign elements from the second array to the new array offsetting the

index in the new array by the length of the first array.
4. Return the new array.

Below is a summary of the information about the method to be written:
Method Attribute Description JAVA

Return Type The new String array made up of all the
combined elements from both parameter arrays. String[]

Method Name This method will combine the values of two arrays
into a new array. add

Parameter(s) The first array. String[] arr1
 The second array. String[] arr2
Return value The combined array. String[]
The method signature is:

String[] add(String[] arr1, String[] arr2)

After Swap
double[]
numbers

index Value
0 1.2
1 1.0
2 1.1
3 1.5

Before Swap
double[]
numbers

index Value
0 1.2
1 1.5
2 1.1
3 1.0

