

In JAVA an array can be declared and initialized using the shorthand assignment
statement:
String[] people={"Aaron","Brandy","Ken","Greg","David","Jason"};
Creating a data structure like the one pictured on the right:
This makes it convenient to manage the list using structures like the “for loop” to
iterate over the list.
And it would be trivial to create a second list, lets say, of family:

String[] family={"Steve","Carol","Kim","Nicole"};

But it is also possible to make a single array, which is itself an array of
arrays, so that both our lists can be contained in one data structure:
String[][] people={
 {"Aaron","Brandy","Ken","Greg","David","Jason"},
 {"Steve","Carol","Kim","Nicole"}
};
Notice that the String array now has two sets of [] brackets, indicating
that there are two-dimensions to this array!
Then, in the assignment portion of the statement there are actually two
pairs of data sets inside curly braces {} separated by a comma, that sit
within the outer curly braces {}.
This has the effect of creating two arrays within another array, which
yields the data structure depicted to the right:

This may seem confusing,
but another way to look at
the same structure is
pictured on the left.

The important difference between the two depictions is that the first is more technically accurate
because each of the two lists inside the outer-list has a different number of elements in it, while the
depiction on the above implies that the second list has the same number of elements as the first,
which is not true.

Generally, two-dimensional arrays are made up of arrays that are of the same size.
For the array, people, the standard methods apply. For example the length of the people array is 2
because it has two elements, each of which is an array. Therefore people[0] is a String array with
6 elements and people[1] is a String array with 4 elements. So the statement:
System.out.println(people.length);
Generates the console output 2 because it contains two arrays!
Keep in mind that what we really have is an array of two arrays, so the length of the people array is
the number of arrays it contains!

Note: On the AP Test there will only be two-dimensional arrays with the same number of
elements in each list. Therefore, you can use either visual representation to help you understand
two-dimensional arrays!

String[] people
index Value
0 Aaron
1 Brandy
2 Ken
3 Greg
4 David
5 Jason

String[][] people
index Value

0

index Value
0 Aaron
1 Brandy
2 Ken
3 Greg
4 David
5 Jason

1

index Value
0 Steve
1 Carol
2 Kim
3 Nicole

String[][] people
Index 0 1 2 3 4 5
0 Aaron Brandy Ken Greg David Jason
1 Steve Carol Kim Nicole

To find out how many elements are in the first array we have to specify which array within people we
want so the statement:
System.out.println(people[0].length); outputs 6 to the console, and:
System.out.println(people[1].length); outputs 4 to the console.
What is the benefit of a two-dimensional array?
Just as we put elements into an array so that we can process them efficiently using loops, we can
make use of loops to process each of the arrays that makes up people.
The code below sets up a nested loop to iterate over all the values people:

Console Output:

And with just a bit more tweaking the further advantages to such a data structure can be seen.
A new array is created that will be titles for each of the arrays that make up the people array. This
array is not part of the people array, but works with it:
(New code is highlighted in yellow)

Console Output:

And the real flexibility can be seen when it comes time to add a third category!
ASSIGNMENT PART A:
Modify the code above so that it includes a third and fourth category with at least three entries in each
category.

01 public class Illustration {
02 public static void main(String[] args) {
03 String[][] people={
04 {"Aaron","Brandy","Ken","Greg","David","Jason"},
05 {"Steve","Carol","Kim","Nicole"}
06 };
07 for (int arrayIndex=0; arrayIndex<people.length; arrayIndex++) {
08 for (int i=0; i<people[arrayIndex].length; i++) {
09 System.out.print("people["+arrayIndex+"]["+i+"]=");
10 System.out.println(people[arrayIndex][i]);
11 }
12 }
13 }
14 }

people[0][0]=Aaron
people[0][1]=Brandy
people[0][2]=Ken
people[0][3]=Greg
people[0][4]=David
people[0][5]=Jason
people[1][0]=Steve
people[1][1]=Carol
people[1][2]=Kim
people[1][3]=Nicole

01 public class Illustration {
02 public static void main(String[] args) {
03 String[][] people={
04 {"Aaron","Brandy","Ken","Greg","David","Jason"},
05 {"Steve","Carol","Kim","Nicole"}
06 };
07 String[] titles={"Friends","Family"};
08 for (int arrayIndex=0; arrayIndex<people.length; arrayIndex++) {
09 System.out.println(titles[arrayIndex]+":");
10 for (int i=0; i<people[arrayIndex].length; i++) {
11 System.out.println("["+i+"]="+people[arrayIndex][i]);
12 }
13 }
14 }
15 }

Friends:
[0]=Aaron
[1]=Brandy
[2]=Ken
[3]=Greg
[4]=David
[5]=Jason
Family:
[0]=Steve
[1]=Carol
[2]=Kim
[3]=Nicole

PART II: FILLING A TWO-DIMENSIONAL ARRAY
The other method for declaring an array uses the keyword new with the assignment operator:
String[][] rectArray=new String[3][5];

The result of this statement is the creation of the variable rectArray, which is a rectangular array
with 3 rows and 5 columns. Each element of the array is null because it is a String array.

In order to fill the array, first a “for loop” will iterate over each row using rectArray.length to know
how many rows there are.

A nested “for loop” will iterate over each column in that row using rectArray.length[0] to know
how many columns there are.

The program below creates a two-dimensional String array using new , then iterates over every
element of the array, filling each element with a String that indicates the row and column of the
element. Finally, the contents of the array are output to the console with labels for row and column:

• Line 04: Notice that the diagram above is a matrix.

In order to process every element in the matrix, a
variable must be created to iterate over the rows. The
outer loop creates the row variable that iterates over
all the rows that make up the matrix using
rectArray.length to determine how many rows are
in the matrix.

• Line 05: A nested loop is used to iterate over the
columns using the col variable. The number of
columns is determined using rectArray[0].length.

• Line 06: This line does all the work. It assigns a
String value to an element of rectArray using row
and col as the indexes. The value that gets assigned
is a concatenated String made up of a left
parenthesis, the row, a comma, the column, and a
closing parenthesis: (row,column).

Console Output:

Step I: Initializing the Array

• Line 03: Declares the rectArray with
the type String[][] using by assigning it
the result of new String[3][5]. For now
this array could be pictured:

After Lines 03-08: The array looks like this:

01 public class Array2DNew {
02 public static void main(String[] args) {
03 String[][] rectArray=new String[3][5];
04 for(int row=0; row<rectArray.length; row++) {
05 for(int col=0; col<rectArray[0].length; col++) {
06 rectArray[row][col]="("+row+","+col+")";
07 }
08 }
09 System.out.print("\t");
10 for (int col=0; col<rectArray[0].length;col++) {
11 System.out.print("Col:"+col+"\t");
12 }
13 System.out.println();
14 for(int row=0; row<rectArray.length; row++) {
15 System.out.print("Row:"+row+"\t");
16 for(int col=0; col<rectArray[0].length; col++) {
17 System.out.print(rectArray[row][col]+"\t");
18 }
19 System.out.println();
20 }
21 }
22 }

String[][] rectArray
Index 0 1 2 3 4
0 (0,0) (0,1) (0,2) (0,3) (0,4)
1 (1,0) (1,1) (1,2) (1,3) (1,4)
2 (2,0) (2,1) (2,2) (2,3) (2,4)

Note: For AP Testing, two-dimensional
arrays will always be rectangular with
the number of rows first, accessed
using array.length, and the columns
second using array[0].length!
This is known as “ROW MAJOR” order.

String[][] rectArray
Index 0 1 2 3 4
0 null null null null null
1 null null null null null
2 null null null null null

 Col:0 Col:1 Col:2 Col:3 Col:4
Row:0 (0,0) (0,1) (0,2) (0,3) (0,4)
Row:1 (1,0) (1,1) (1,2) (1,3) (1,4)
Row:2 (2,0) (2,1) (2,2) (2,3) (2,4)

Console Output from Lines 09-13:

• Lines 14-20: These nested for loops output the row

labels and the contents of the row from rectArray to
the console:
o Line 14: For loop iterates from 0 to 2 because
rectArray.length has the value 3.

o Line 15: Outputs the letters "row:" followed by the
value of row and then a tab character.

o Line 16: A nested loop is used to iterate up to
rectArray[0].length.

• Lines 09-13: Generate the column
headings:
o Line 09: Outputs a tab character to

the console.
o Line 10: Creates the col variable to

iterate once for each column in
rectArray.

o Line 11: Outputs the letters "col:"
followed by the value of col and then a
tab character.

o Line 13: Outputs a carriage-return to
end the line.

Console Output from Lines 14-20:

o Line 17: Outputs the value of
rectArray using row and col as
indexes.

o Line 19: Outputs a carriage-return to
end the line.

ASSIGNMENT PART B:
Write the methods so the main() method below generates the console
output like that shown below. Your methods should work with the
method calls as written:

The fillTable() method has four parameters, the first two are integers
specifying the number of rows and columns in the array and the second
two parameters specify the minimum and maximum values used to
generate random values for each element of the int array returned by
the method.
The sumTables() methods returns a two-dimensional int array where each element is the sum of the
same row and column from the two parameter arrays.

Finally, the outputTable() method prints a table title followed by the values of the parameter int
array with rows and columns numbered.

 Col:0 Col:1 Col:2 Col:3 Col:4

09 System.out.print("\t");
10 for (int col=0; col<rectArray[0].length;col++) {
11 System.out.print("Col:"+col+"\t");
12 }
13 System.out.println();
14 for(int row=0; row<rectArray.length; row++) {
15 System.out.print("Row:"+row+"\t");
16 for(int col=0; col<rectArray[0].length; col++) {
17 System.out.print(rectArray[row][col]+"\t");
18 }
19 System.out.println();
20 }

Row:0 (0,0) (0,1) (0,2) (0,3) (0,4)
Row:1 (1,0) (1,1) (1,2) (1,3) (1,4)
Row:2 (2,0) (2,1) (2,2) (2,3) (2,4)

01 public class SumTables {
02 public static void main(String[] args) {
03 int rows=5, cols=5;
04 int min=1, max=10;
05 int[][] table1=fillTable(rows, cols, min, max);
06 int[][] table2=fillTable(rows, cols, min, max);
07 int[][] sumTable=sumTables(table1, table2);
08 outputTable("Table 1", table1);
09 outputTable("Table 2", table2);
10 outputTable("Sum of Table 1 and Table 2", sumTable);
11 }
13 }

Table 1
 1 2 3 4 5
1 6 4 5 5 8
2 5 3 5 5 2
3 7 7 8 6 1
4 10 9 3 2 2
5 4 1 3 6 1
Table 2
 1 2 3 4 5
1 8 9 6 6 7
2 7 10 6 9 9
3 10 6 4 7 5
4 10 3 1 10 1
5 4 5 7 4 4
Sum of Table 1 and Table 2
 1 2 3 4 5
1 14 13 11 11 15
2 12 13 11 14 11
3 17 13 12 13 6
4 20 12 4 12 3
5 8 6 10 10 5

