

In an Object Oriented Programming language (often referred to simply as OOP) such as JAVA there
exists a flexible system of combining data with the code that is responsible for managing the data into
one unit. Such an entity is called an OBJECT. The collection of instructions for creating and
maintaining the object are referred to as the CLASS of the Object.
You have been working with one special Object for quite some time now by using the String class.
While the String class does have a few special characteristics that differentiate it from standard
object classes, the basic functionality it demonstrates does illustrate how an object works.
Once you have created a String, you can access methods that return results based upon the value
of the String. The AP subset includes the length(), substring(), equals(), indexOf(), and
compareTo() methods.
So a String represents the combination of data, the contents of the String, and methods that return
information about (length() and equals()), or even a subset of (substring()) the string.
In the past all the methods that have been written have had the static keyword in the method names.
The static keyword indicates that a method is entirely self-contained and does not use any data from
the class that it is a part of. When writing a class we will see that this keyword will usually no longer
be used.
Let's look at the basic anatomy of a class:

• Line 01: First comes the class declaration with the
keywords public and class followed by the name
of the class: SimpleObject

• Lines 02-03: Generally the next items are the
“Instance Variables.” The SimpleObject class has two instance variables, name and age that
are declared but not given values.

01 public class SimpleObject {
02 private String name;
03 private int age;
04 public SimpleObject() {
05 name="";
06 age=0;
07 }
08 public SimpleObject(String setName) {
09 name=setName;
10 age=0;
11 }
12 public void setName(String setName) {
13 name=setName;
14 }
15 public void setAge(int setAge) {
16 age=setAge;
17 }
18 public String getName() {
19 return name;
20 }
21 public int getAge() {
22 return age;
23 }
24 public String toString() {
25 return name;
26 }
27 }

Note: Instance variables use the keyword qualifier private . While it is possible to make an
instance variable public, it is highly discouraged and all instance variables are to be private for
AP Testing purposes!

CLASS DECLARATION: The class declaration primarily
contains the name of the class that will be used to
“instantiate” an object of that class. By convention,
the name of the class should be capitalized.

INSTANCE VARIABLE: An instance variable (sometimes
also called non-Static Fields in JAVA, or “data
members” in many languages) stores information
that the class uses. An instance variable is declared
by giving its type and variable name. The variable’s
first letter should be lowercase.
Making an instance variable private means that it
cannot be “seen” by any code outside this class. This
is called “data hiding” or “protecting” and is an
important feature of object-oriented design.

• Lines 04-07: The default constructor for
SimpleObject sets the instance variable name to an
empty String and the age to 0.

• Lines 08-11: This overloaded constructor for
SimpleObject allows the name to be set during
instantiation by passing the String setName as a
parameter to the method. (See OVERLOADING below!)

• Lines 12-14: This setter method
allows the program that has instantiated
the object to set the value for the instance
variable name. The parameter setName is
passed to the method and then assigned
to the instance variable name.
• Lines 15-17: Another setter method
that allows the value of age to be mutated,
or set, to the value passed as the
parameter setAge by the program that
has instantiated the object.
• Lines 18-20: This getter method
simply returns the current value of the
name instance variable.
• Lines 21-23: Getter method simply
returns the current value of age.
• Lines 24-26: This special getter
method gets called automatically any time
the object is used as a String. The code
System.out.println(thing) would
cause this method to be called because
thing is expected to be a String in that
usage of the println() method.
• Lines 27: The final closing brace ends
the definition of the class.

01 public class SimpleObject {
02 private String name;
03 private int age;
04 public SimpleObject() {
05 name="";
06 age=0;
07 }
08 public SimpleObject(String setName) {
09 name=setName;
10 age=0;
11 }
12 public void setName(String setName) {
13 name=setName;
14 }
15 public void setAge(int setAge) {
16 age=setAge;
17 }
18 public String getName() {
19 return name;
20 }
21 public int getAge() {
22 return age;
23 }
24 public String toString() {
25 return name;
26 }
27 }

CONSTRUCTOR: A constructor is a special method that
has no return type and has the method name of the
class itself. There may be more than one constructor
for a class, but there must be as least one.
Constructors must have the keyword qualifier
public.
There should be a “default constructor” which has no
parameters.
The job of a constructor is to initialize all the instance
variables of the class to their initial, or default values.

SETTER: A setter method (also referred to as a
“mutator”) allows the program that has instantiated
this object to alter the value of one or more of its
instance variables.
Using a setter method allows the code within the
method to “check” or “validate” the value or change
that is being made. In this way, the class maintains
control over the possible values that its instance
variables can have.

GETTER: A getter method (also referred to as an
“accessor”) allows the program that has instantiated
the object to get information from the object.
A getter method often simply returns the current
value of an objects instance variable.
In other cases, the method may perform some
operations, combining and evaluating data to return
useful information.

OVERRIDDEN INHERITED GETTER: A method that is
“inherited” from another class and then defined in the
current class is an “overridden” method.
In JAVA, all objects are said to be extended from the
Object class, and therefore “inherit” certain
methods. One of these methods is toString()
which returns a String. This method has the special
property that it is used whenever an object is “cast”
as a String variable.
This most commonly occurs when an object is
passed to the System.out.println() method.

It is important to understand that the code in a class by itself doesn’t “do” anything. Think of a class
definition as a “blueprint” for a building. A blueprint by itself doesn’t do anything until the blueprint is
used to construct the building depicted by the blueprint.
The process of creating an object from a class definition is called INSTANTIATION and is analogous to
“constructing” a building from the blueprint. The analogy further holds in that a single blueprint can be
used to construct many copies of a basic building design. Once the building has been created, it is a
unique instance of that particular building. Rooms may be occupied (instance variables set or
mutated) and information about the building can be accessed using its getter methods. The
SimpleObjectDriver program below will demonstrate how a SimpleObject is first instantiated, and
then used:

• Line 03: To create the variable thing1, first the type is
given as SimpleObject followed by the variable name
thing1 and it is instantiated by the keyword new and the
constructor method SimpleObject(). Because the
constructor has no parameters, this instance of a
SimpleObject will be created using the “default
constructor.”
• Line 04: Calls the setName() method of thing1. This
method has one parameter, the new name, “Thing 1” is
given to this instance of a SimpleObject called thing1.
What actually occurs? The following lines of code from
SimpleObject get executed:

• Line 05: Calls the setAge() method
of thing1. This method works just like
the setName() method except that an
integer value is passed as the parameter
that gets assigned to the instance variable
age of thing1.
• Line 06: Outputs the text
"thing1.getName()=" to the console, but
then the code from thing1 is triggered
when the getName() method of thing1 is
reached resulting in the console output:

INSTANTIATION: The process of
instantiation generally occurs when a
variable assignment is followed by the
keyword new for any variable that is
an object.
This most often occurs right after a
variable has been declared so it takes
the form: Type name=new Type();
Notice that after the keyword new, the
type is repeated with parenthesis after
it. This is because the constructor
method is getting called, not because
the type is getting repeated!

OBJECT METHOD CALL: After an Object
has been instantiated its methods can
be used to access information or send
information in the form of method
parameters.
Calling a method is often referred to
as “sending a message.” If there are
no parameters in the method than the
method call itself is the message
because the object is generally being
asked to perform some action!
If the method has a return value, it
represents a return message.

• Line 12 : Simply accepts the parameter variable
setName, giving it the value “Thing 1.”

• Line 13 : Assigns the value of setName to the
instance variable name.

• Line 14: Returns control back to the main program.
12 public void setName(String setName) {
13 name=setName;
14 }

• Line 18 : getName() has no parameters so this line

just serves as the entry point to the method.
• Line 19: Returns the value of the instance variable

name, which currently has the value "Thing 1" and
then returns control back to the main program.

18 public String getName() {
19 return name;
20 }

01 public class SimpleObjectDriver {
02 public static void main(String[] args) {
03 SimpleObject thing1=new SimpleObject();
04 thing1.setName("Thing 1");
05 thing1.setAge(21);
06 System.out.println("thing1.getName()="+thing1.getName());
07 System.out.println("thing1.getAge()="+thing1.getAge());
08 System.out.println("I am " + thing1);
09 }
10 }
11 }

thing1.getName()=Thing 1

• Line 07: This line works like Line 06
except that an integer value is returned
from the method. Note that the
System.out.println() method starts with
the String “thing1.getAge()=” so the
integer value returned by the getAge()
method is converted into the String “21”
and then concatenated with the text
“thing1.getAge()=” resulting in the
console output:

• Line 08: This line is very similar to Line
06 but with one very significant difference.
The line begins by executing a
System.out.println() method. The
parameter that gets passed to this method
must first be evaluated. First comes the
String "I am " followed by thing1. Notice that there is no method given after thing1 so thing1 must
be “cast” into a String so that it can be concatenated with the String "I am ". Recall that the special
method toString() is called when an Object is cast into a String. So the thing1 object is implicitly
cast into a String, triggering its toString() method at Line 24. The return value “Thing 1” is then
concatenated with the String "I am " resulting in the console output:

thing1.getAge()=21

01 public class SimpleObjectDriver {
02 public static void main(String[] args) {
03 SimpleObject thing1=new SimpleObject();
04 thing1.setName("Thing 1");
05 thing1.setAge(21);
06 System.out.println("thing1.getName()="+thing1.getName());
07 System.out.println("thing1.getAge()="+thing1.getAge());
08 System.out.println("I am " + thing1);
09 }
10 }
11 }

• Line 24 : toString() has no parameters so this

line just serves as the entry point to the method.
• Line 25 : Returns the value of the instance variable

name, which currently has the value “Thing 1” and
then returns control back to the main program.
24 public String toString() {
25 return name;
26 }

OVERLOADING EXAMPLES: The pattern of variable types used when a method is called will
determine which overloaded method actually gets triggered.
The code below illustrates a single method name with five different combinations of parameters.
Not that the variables names are inconsequential, only the order of variable types matters!
Each of the methods below returns a different String. Each of the method calls starting on line
Line 08 will result in a different version of doIt() getting called:
• Line 08: The call to doIt() with no parameters executes the method on Line 02 resulting

"A" getting output to the console.
• Line 09: This call to doIt() has one integer parameter so the doIt(int x) method on Line

03 gets called so that "B" is output to the console.
• Line 10 : This call to doIt() includes the integer parameter 5 followed by the double

parameter 5.0 so the doIt(int x, double y) method on Line 04 gets called and "C" is
output to the console.

• Line 11 : The call to doIt() on this line requires that the expression 2/.5 be evaluated first,
and since .5 is a double, the whole expression will be a double so the first parameter is a
double. The second parameter is the integer 1 so the doIt(double y, int x) method on
Line 05 gets called and "D"
is output to the console.

• Line 12 : This call to doIt()
has the double value 0.0 for
the first parameter and the
second parameter is the
integer value 5 cast to be a
double so the doIt(double
x, double y) method on
Line 06 gets called and "E"
is output to the console.

01 public class Overloading {
02 public static String doIt() {return "A";}
03 public static String doIt(int x) {return "B";}
04 public static String doIt(int x, double y) {return "C";}
05 public static String doIt(double y, int x) {return "D";}
06 public static String doIt(double x, double y) {return "E";}
07 public static void main(String[] args) {
08 System.out.println(doIt());
09 System.out.println(doIt(5));
10 System.out.println(doIt(5,5.0));
11 System.out.println(doIt(2/.5,1));
12 System.out.println(doIt(0.0,(double)5));
13 }
14 }

I am Thing 1

