
 
The JAVA List interface defines the methods that the ArrayList<> class must implement. The List 
interface and classes such as ArrayList that implement it provide a more flexible mechanism than a 
traditional array. Before looking at the methods of this class, it is important to understand the syntax 
required to declare it. 
Recall that there are up to three steps to declaring a variable: 

1. The type 
2. The variable name 
3. Assigning the variable an initial value 

When declaring a variable, the first two parts are always required, but the third part is optional, 
performed depending on how the variable will be used. 
When declaring the type for a variable that will be an ArrayList<> you actually have two options, 
you can declare the variable as either a List<> or as an ArrayList<>. This is an often-overlooked 
benefit of having a class that implements an interface. You can use the interface like a super-class 
when specifying the type. But why would you do this? 
It turns out that there are many other implementations of the List interface and if you specify the 
type as a List instead of an ArrayList you can substitute a different implementation very easily! 
It is not necessary, but it is preferable to use List<> as the type. 
Before you can declare a List you must know what type of object makes up the list. For our initial 
example, let’s make a list of Strings, so the two possible ways to declare such a list are: 

! List<String> 
! ArrayList<String> 

It is important to remember that the type of the object is List of String (List<String>) not just List! 
The next part of a declaring a variable is the variable name. Let’s make a list of names and since this 
is a list of many strings, make the variable name plural: 
List<String> names 
Next comes the optional part: assigning the variable an initial value. 
In this case we want a new empty list to which we can add names. Remember that our List is going 
to actually be an ArrayList object, which means we need to call its constructor using the JAVA 
keyword new, and the constructor always shares the same name as the class. The name of the class 
is a bit more complicated though. 
We are making an ArrayList of String, so the class is actually ArrayList<String>. Finally, since 
we are calling a constructor, which is a method, we must also include the parenthesis! 
Thus the call to the constructor method reads: new ArrayList<String>() 
And when we put the type, the variable name, and the call to the constructor together, we get: 
List<String> names=new ArrayList<String>(); 
We could just as easily have declared our new list using its exact type instead of the interface: 
ArrayList<String> names=new ArrayList<String>(); 
Declaring the list object this way would simply make our code less flexible.  



So now that we have instantiated a new empty list we can use the methods that are implemented as 
part of the List interface to interact with the it. The following methods are in JAVA AP subset: 

• int size() returns the number of elements in the list (equivalent to .length for arrays). 
• boolean isEmpty() returns true if the list has no elements. 
• boolean add(E element) returns true if the element is added to the end of the list. 
• void add(int index, E element) inserts the element at index. 
• E get(int index) returns the element at index. 
• E set(int index, E element) puts element at index and returns the object that was 

replaced. 
• E remove(int index) removes the object at index and returns that object. 
• boolean contains(Object element) returns true if the list contains the element. 

In order to use the List interface and ArrayList class we will need to import them: 
import java.util.List; 
import java.util.ArrayList; 
Then we can instantiate our names list using: 
List<String> names=new ArrayList<String>(); 
Now let us interact with it using its methods: 

The	
  int size() 	
  method:	
  
Just like working with arrays, it is often useful to know how many elements there currently in the List. 
Instead of using .length though we must use the .size() method. 
int numberOfNames=names.size(); 
Since we just instantiated our list, the variable numberOfNames will have the value 0 after the line of 
code above is executed. 

The	
  boolean isEmpty() 	
  method:	
  
If you simply want to find out if a list currently has no elements, you can use the isEmpty() method: 
boolean areThereNames=names.isEmpty(); 
Is the equivalent of the code: 
boolean areThereNames=names.size()==0; 

The	
  boolean add(E) 	
  method:	
  
The first thing to notice in the method signature for this method is the use of the capital E where you 
would normally see an explicit type. This is the one of the ways in which the use of generics affects 
syntax. Because the type that makes up this list isn’t known until you declare it, the type E represents 
whatever type makes up your particular list. Since we make a list of String, the add() method takes a 
String as a parameter, but in all the documentation, you will see a capital E as a place holder! 
Let’s add three names to the list using this method: 
boolean added=names.add("Aaron"); 
names.add("Brandy"); 
names.add("Charlie"); 
We can picture the contents of the list the same way we do for arrays. The 
first element added to the list is put at index 0, and each new element is 
added at the end of the list. 
Notice that this method returns a boolean value. For the purposes of the AP Subset there is no 
useful purpose to storing this result because it will always be true. 
Therefore you can simply ignore the return result when calling this method. 

After 3 calls to add:  
names 

index Value 
0 "Aaron" 
1 "Brandy" 
2 "Charlie" 

 



The	
  void add(int index, E element) 	
  method:	
  
The add method is overloaded with another version that lets the programmer 
specify the index where the element is to be added. The index must be 
greater than 0 and less than or equal to the current size of the list. Any 
elements past the specified index will be moved down the list to make room. 
Let’s add another name to the list using this method: 
names.add(0, "David"); 

The	
  E get(int index) 	
  method:	
  
The get() method returns the element in the list at the index. 
We will get the fourth name, found at index 3: 
String theName=names.get(3); 
After this line of code is executed, the value of the variable theName is “Charlie.” 

The	
  E set(int index, E element) 	
  method:	
  
The set() method allows a value in the list to be replaced at a given index. 
The old value is returned. 
We will change the name found at index 2 to “Edith” and store the old value: 
String oldName=names.set(2, "Edith"); 
After this line of code is executed, the value of the variable oldName is 
“Brandy.” 

The	
  E remove(int index) 	
  method:	
  
The remove() method removes a value from the list and returns the removed 
value. 
Let’s remove the second element, found at index 1: 
String removedName=names.remove(1); 
After this line of code is executed, the value of the variable removedName is 
“Aaron.” 

The	
  boolean contains(E element) 	
  method:	
  
The contains() method returns true if the value of the parameter element is found in the list. 
Is “Aaron” in the list? 
boolean inList=names.contains("Aaron"); 
After this line of code is executed, the value of the variable inList is false. 
Is “Edith” in the list? 
boolean inList2=names.contains("Edith"); 
After this line of code is executed, the value of the variable inList2 is true. 

Working	
  with	
  an	
  ArrayList<>:	
  
Now that we have seen each of the methods that make up the List<> interface and thus the 
concrete ArrayList<> class, it is time to see some examples of how to work with them. 
  

After add at index 
names 

index Value 
0 "David" 
1 "Aaron" 
2 "Brandy" 
3 "Charlie" 

 

After call to remove 
names 

index Value 
0 "David" 
1 "Edith" 
2 "Charlie" 

 

After call to set 
names 

index Value 
0 "David" 
1 "Aaron" 
2 "Edith" 
3 "Charlie" 

 



The code below will declare, instantiate, fill, set, and remove names from a list of String: 

 
The contents of names after each call that modifies it is made is on the 
right: 
But instead of taking this on faith, let's write some code that will 
actually display the contents of the list to the console. 
Just like processing elements of an array, we will need a loop. 
To iterate over each element of the list, we will write some very familiar 
looking code: 
for (int i=0; i<names.size(); i++) { } 
Notice that the only difference in our loop code from working with 
arrays is that we use .size() instead of .length. 
Inside the loop we will need to process each element of the list. We will 
use the get() method to retrieve the value of each element at index i. 
Then the values will be output to the console: 

When these lines of code are added to the program and executed, we 
can see the current contents of the names list in the console: 
 

 
 
 
 
 
 

 
 

 

13   for (int i=0; i<names.size(); i++) { 
14    String name=names.get(i); 
15    System.out.println("get("+i+")="+name); 
16   } 
17  } 
18 } 
 

01 import java.util.ArrayList; 
02 import java.util.List; 
03  
04 public class FillArrayList { 
05  public static void main(String[] args) { 
06   List<String> names=new ArrayList<String>(); 
07   names.add("Aaron Braskin"); 
08   names.add("Brandy Gaunt"); 
09   names.add("Charlie White"); 
10   names.add(0, "David Conner"); 
11   names.set(2, "Gena Brenan"); 
12   names.remove(1); 
13  } 
14 } 
 

get(0)=David Conner 
get(1)=Edith Sharf 
get(2)=Charlie White 
 

Line 11: names 
index Value 
0 "David Connor" 
1 "Aaron Braskin" 
2 "Gena Brenan" 
3 "Charlie White" 

 

Line 10: names 
index Value 
0 "David Connor" 
1 "Aaron Braskin" 
2 "Brandy Gaunt" 
3 "Charlie White" 

 

Line 09: names 
index Value 
0 "Aaron Braskin" 
1 "Brandy Gaunt" 
2 "Charlie White" 

 

Line 08: names 
index Value 
0 "Aaron Braskin" 
1 "Brandy Gaunt" 

 

Line 07: names 
index Value 
0 "Aaron Braskin" 

 


