

Searching is the process of navigating through some data set, an array or a List, in an attempt to find
a matching element. If a matching element is found, the index of the element is returned and if no
match is found then a flag value (usually -1) is returned instead.
The simplest search algorithm to understand and code is the LINEAR SEARCH. This search algorithm is
so simple it practically writes itself:

• Iterate over each element
• If the element matches, return it's index
• If all the elements are exhausted, then there is no match, return -1

Searching is easier to visualize using names so all the examples will use the following array:

Which can be summarized by listing it’s type, indexes, and values:

Searching	
 an	
 Array	

Before considering the algorithm for searching an array, consider the result of
such a search. Using the example names array, if the value to be searched for
was “Dennis” then the result of such a search could have several different
forms.
The value searched for, “Dennis,” could be returned, but that wouldn’t be terribly useful since the
value was already known, after all it was the search value. A simple boolean result could be returned,
the value was either in the array or it wasn’t. However, the most useful piece of information would be
the index of the array element where the value was found!
If the value isn’t in the array, then a value that would not normally be returned can indicate such. This
is how the String method .indexOf() works. When the value can’t be found in the string, -1 is
returned because it isn’t a possible index.
Below is a summary of the information about the method to be written:
Method Attribute Description JAVA
Return Type Returning an array index int
Method Name This method will search an array for a value linearSearch
1st Parameter The array to search, using a generic name String[] array
2nd Parameter The value to search for, or find String find
Return value(s) If the string to be found is in array, return the index 0 to array.length-1
 If the string to be found isn’t in the array, return -1 -1
With this information the method header can be written:
public static int linearSearch(String[] array, String find)
Recall that the proper way to compare two String values for equality is the .equals() method instead
of the == operator. However, this will introduce possible complications. Recall as well that a String
may have the special value null, in which case trying to use the .equals() method will generate a
“NullPointerException” so it is important to first make sure that each String is not null before
trying to use the .equals() method.
Such a test can be written as a simple “if” statement: if (find==null)
If the find variable is null, then a separate kind of equality test can be performed to see if the array
value is also null!
Comparing find to each value in the array inside a “for loop” will complete the LINEAR SEARCH
algorithm.

String[] names={"Charlie","Becky","Adam","Fred","Ethan","Dennis"}; String[] names
index Value
0 "Charlie"
1 "Becky"
2 "Adam"
3 "Fred"
4 "Ethan"
5 "Dennis"

Putting it all together we can write the following method:
Line 01 is the method
header from the prior
page.
Line 02 creates the
iterator variable i that
will count from 0 to the
end of the array.
Line 03 tests to see if
the String find has a
null value.
Line 04 executes if
find was null. It
checks to see if the
element at index i also
has the value null.

If the expression in the conditional of Line 04 is true Line 06 returns the current value of i, the index
of the first matching value for find.
Line 07 begins the else code block that gets executed if the String find is not null.
The conditional in Line 08 uses the .equals() method to see if the current value at index i is the
same as find.
If the expression in the conditional of Line 08 is true Line 09 returns the current value of i, the index
of the first matching value for find.
Finally, Line 13 returns -1 if the “for loop” has iterated over all the values in the array without finding a
match!
Searching for a value that is an int, double, or boolean is much simpler because those types always
have a value so it is not necessary to check for null values.
Typically a method like search array would have the return value stored in a variable for later use.

The code above uses the ConsoleInput class to allow a user to type a name. Notice that the loop is
primed in line 04 by getting console input before the main loop begins. Writing the code this way
allows the user to enter a blank String to exit the program without performing any search.
After that, the loop searches for the String find and either identifies where it is in the array or
indicates that the String entered isn’t in the array!

01 public static void main(String[] args) {
02 String[] names={"Adam","Becky","Charlie","Dennis","Ethan","Fred","Gary","Heath"};
03 System.out.println("Enter to exit program");
04 String find=ConsoleInput.inString("Search for Name:");
05 while (find.length()!=0) {
06 int index=searchArray(names,find);
07 if (index!=-1) {
08 System.out.println(names[index]+" is element#"+index);
09 } else {
10 System.out.println(find+" is not in the array!");
11 }
12 find=ConsoleInput.inString("Search for Name:");
13 }
14 }

01 public static int linearSearch(String[] array, String find) {
02 for (int i=0; i<array.length; i++) {
03 if (find!=null) {
04 if (array[i]==null) {
05 return i;
06 }
07 } else {
08 if (find.equals(array[i])) {
09 return i;
10 }
11 }
12 }
13 return -1;
14 }

Searching	
 an	
 Array	
 for	
 a	
 Minimum	
 or	
 Maximum	
 Value	

It will be easier to consider searching for a min or max value considering numbers,
but the process can be applied to String arrays as well.

Now examine a new data set for this example, an int array called numbers:
int[] numbers={12,15,11,9,10};
A quick glance at the table reveals that the smallest value, “9,” is stored at index 3.
However, if this array contained a list of a million numbers, it would take much more
than a glance to establish what the smallest value was in the list. In that case, an
algorithm is truly needed!
Use Chart A to follow this process step by step:
Begin by assuming the first value in the list, the one at
index 0, is the smallest value.
Now compare the value stored at the current low index of 0
with the one stored at index 1. Since the value stored at
index 0 is less than the value at index 1, index 0 remains
the low index.
Next compare the value stored at the current low index of 0 with the one stored at index 2. Since the
value stored at index 0 is greater than the value at index 2, index 2 becomes the new low index.
Then compare the value stored at the current low index of 2 with the one stored at index 3. Since the
value stored at index 2 is greater than the value at index 3, index 3 becomes the new low index.
Finally, compare the value stored at the current low index of 3 with the one stored at index 4. Since
the value stored at index 3 is less than the value at index 4, index 3 remains the new low index.
Notice that each of the comparison steps followed the same procedure, only the indexes to be
compared each time changed. The first index, the current low index could easily be considered a
variable and the second the second index is simply a loop iterator that starts at 1 and ends at end of
the array!
This is how a LINEAR SEARCH algorithm works. Why record the index instead of the actual number?
The answer once again is a question of getting the maximum information possible. If you have the
index you can get the value, but if you only have the value it is impossible to know the index too.
Now that the algorithm has been analyzed consider the method header, also known as a METHOD
SIGNATURE. Just like searching for a matching value, we can construct a table to help analyze the
method:
Below is a summary of the information about the method to be written:
Method Attribute Description JAVA
Return Type Returning an array index int

Method Name This method will return the index of the lowest
value in the array minIndex

Parameter The array to search, using a generic name int[] array
Return value Index of the element with the lowest value 0 to array.length-1

Notice that there are a few differences from the linearSearch method. The return type will still be an
int because an array index value will be returned, but there is only one parameter, an int array.
Finally, notice that some index value will always be returned because some value in the array must
be the smallest value!

int[]
numbers

index Value
0 12
1 15
2 11
3 9
4 10

Chart A: Finding a Minimum
index Value Low

Index
Low

Value Compare Next Low
Index

Next Low
Value

0 12 0 12 Assume 0 12
1 15 0 12 12<15 0 12
2 11 0 12 11<12 2 11
3 9 2 11 9<11 3 9
4 10 3 9 10<9 3 9

Putting it all together:
Line 01 is the method header from the
prior page.
Line 02 creates the variable currentMin
and sets its initial value to 0 because it the
algorithm assumes that the first value in
the array is the minimum.
Line 03 creates the iterator variable i that
will count from 1 to the end of the array.
Notice that the first array value will be
skipped by the loop because it is already

assumed to be the minimum!
Line 04 tests to see if the value stored at index i is less than the value stored at index currentMin.
Line 05 executes if the expression in Line 04 was true. It is true only if a new minimum value was
found. If a new minimum was found, then record its index, i, as the new currentMin by assigning
currentMin the value of i.
Finally, Line 08 returns the value stored in currentMin, the index of the minimum value is this array!
To test this method, simply create an int array in the main() method, adapts the outputArray()
method to work for an int array and then see if the correct value is returned.

Console Output:

Finding a minimum or maximum value that is an int or double is much simpler than with a String
because those types can be compared using simple relational operators greater (>) and less than (<).
To perform the same kind of comparison for two String values, the String method .compareTo()
must be used!
But remember, String values may be null, in which case trying to use a String method will
generate a “NullPointerException” so it is important to first make sure that each String is not
null before trying to use the .compareTo() method.

01 public class FindMinInArray {
02 public static void main(String[] args) {
03 int[] numbers={12,15,11,9,10};
04 outputArray(numbers,"numbers");
05 int minI=minIndex(numbers);
06 System.out.println("Minimum value: "+numbers[minI]);
07 System.out.println("At index: "+minI);
08 }
09 public static int minIndex(int[] array) {
10 int currentMin=0;
11 for (int i=1; i<array.length; i++) {
12 if (array[i]<array[currentMin]) {
13 currentMin=i;
14 }
15 }
16 return currentMin;
17 }
18 public static void outputArray(int[] arr, String arrName) {
19 for (int i=0; i<arr.length; i++) {
20 System.out.println(arrName+"["+i+"]="+arr[i]);
21 }
22 }
23 }

numbers[0]=12
numbers[1]=15
numbers[2]=11
numbers[3]=9
numbers[4]=10
Minimum value: 9
At index: 3

01 public static int minIndex(int[] array) {
02 int currentMin=0;
03 for (int i=1; i<array.length; i++) {
04 if (array[i]<array[currentMin]) {
05 currentMin=i;
06 }
07 }
08 return currentMin;
09 }

Using	
 the	
 .compareTo(String) 	
 Method	

The .compareTo() method can only be used on a String that has a value, assume the following
declarations:
String s1="a",s2="b";
To compare s1 to s2 to see the LEXICOGRAPHIC relationship (a fancy word that essentially means
alphabetical) between the two String values, use the .compareTo() method on s1 with s2 as the
parameter like this:
s1.compareTo(s2)
The .compareTo() method returns an int value that is less than, greater than, or equal to 0
depending upon the relationship between the two String values.
The following table summarizes how the .compareTo() method works:
Relationship between str and anotherStr str anotherStr Example(s) Result
str lexicographically precedes anotherStr "a" "b" str.compareTo(anotherStr) < 0
str lexicographically follows anotherStr "b" "a" str.compareTo(anotherStr) > 0
str is lexicographically identical to anotherStr "a" "a" str.compareTo(anotherStr) 0

When finding a minimum or maximum value for int and double arrays there must always be a
minimum and maximum, but a String array might be filled with all null values, in which case it would
make sense to return -1 instead of a valid index just like the linear search method does.
Considering the changes that would be necessary for a minIndex(String[] array) method the
following summary can be made:

• If the current value pointed to by currentMin is a null value, then the current index position
should automatically be the new currentMin.

• If the value at the current index position is null, then don’t compare it to the value at
currentMin.

• If the final array value indicated by currentMin is null, then return -1 instead of currentMin
because it means all the array values were null!

