

The Merge Sort algorithm is often referred to as a “Divide and Conquer” algorithm. In a sense, it is
made up of two algorithms, one that divides, and the other conquers! First let us examine the second
of the two algorithms and why it is so useful.
The conquer algorithm efficiently combines two already sorted lists into a single sorted list. The
algorithm simply goes through each list starting with the first element, determines which list has the
smaller value, and puts that element into the next spot in the combined list. It continues comparing
the next element in each list until all elements have been combined into one unified ordered list.
Let's begin by looking at short example:
The algorithm to combine to lists that
are already sorted is fairly simple breaks
down into two primary parts. Before
looking at each part, here is the brief
code to set up the arrays to work with:
Lines 01 and 02 create two arrays,
list1 and list2 with three elements
each.

Line 03 creates an empty
array combinedList with 6
elements to fill by
combining the two smaller
lists.

Lines 04 and 05 create index variables that are initialized to 0 for each list. These variables will keep
track of which element of each list will be the next to be processed as the algorithm continues.
The variables
list1Index and
list2Index indicate
the next array
element to be
processed, so the
loop in line 01 will
continue until one of
these variables
indicates that the
end of its related list
has been reached.
During each iteration of the loop, line 02 compares the values pointed to by list1Index and
list2Index. The smaller of the two is copied into the combinedList array at the
combinedListIndex position by either line 03 or line 06 . Whichever list the value was copied from
has it's index variable incremented so that the next comparison will be on the next value in that list by
line 04 or line 07 . Finally, regardless of which list the value was copied from, line 09 increments the
combinedListIndex so the next value copied will go into the next empty position in the
combinedList array.
The algorithm will leave one of the two lists containing some elements that have yet to be added to
the combinedList array so the second part of the algorithm will take care of that.

List 1 Combined List List 2
2 1 1
3 2 4
5 3 6
 4
 5
 6

01 int[] list1={2,3,5};
02 int[] list2={1,4,6};
03 int[] combinedList=new int[list1.length+list2.length];
04 int list1Index=0, list2Index=0;
05 int combinedListIndex=0;

01 while(list1Index<list1.length && list2Index<list2.length) {
02 if(list1[list1Index]<list2[list2Index]) {
03 combinedList[combinedListIndex]=list1[list1Index];
04 list1Index++;
05 } else {
06 combinedList[combinedListIndex]=list2[list2Index];
07 list2Index++;
08 }
09 combinedListIndex++;
10 }

Of the two while loops on the below, only one will actually execute because after the code above has
run, one of the listNIndex variables will be equal to it's associated list's length and therefore not
execute.

The other while loop simply
copies the remaining elements
in the list so that when it is
done, combinedList
represents the fully ordered
and integrated combination of
list1 and list2.
The code below shows the
complete JAVA program from
the example along with a final
loop to output the results to the
console:

Console Output:

This completes the
“merge” portion of the
Merge Sort.
Once again, this is only
one half of the overall
algorithm. This sub-
algorithm of the overall
algorithm can itself be
said to have two parts.
In part 1, two lists that
are each in sorted order
are integrated in order
one element at a time
until one of the lists runs
out of elements.
At that point, part 2 takes
over, copying the
remaining elements from
the other list in order into
the combined list.

However, to be useful in the complete Merge Sort algorithm, the process will need to be performed as
a method. Furthermore, it will be much more useful if it can integrate two portions of an array back
into the same array.

while(list1Index<list1.length) {
 combinedList[combinedListIndex]=list1[list1Index];
 list1Index++;
 combinedListIndex++;
}
while(list2Index<list2.length) {
 combinedList[combinedListIndex]=list2[list2Index];
 list2Index++;
 combinedListIndex++;
}

public class CombineLists {
 public static void main(String[] args) {
 int[] list1={2,3,5};
 int[] list2={1,4,6};
 int[] combinedList=new int[list1.length+list2.length];
 int list1Index=0, list2Index=0, combinedListIndex=0;
 while(list1Index<list1.length && list2Index<list2.length) {
 if(list1[list1Index]<list2[list2Index]) {
 combinedList[combinedListIndex]=list1[list1Index];
 list1Index++;
 } else {
 combinedList[combinedListIndex]=list2[list2Index];
 list2Index++;
 }
 combinedListIndex++;
 }
 while(list1Index<list1.length) {
 combinedList[combinedListIndex]=list1[list1Index];
 list1Index++;
 combinedListIndex++;
 }
 while(list2Index<list2.length) {
 combinedList[combinedListIndex]=list2[list2Index];
 list2Index++;
 combinedListIndex++;
 }
 for (int i=0; i<combinedList.length; i++) {
 System.out.println("["+i+"]="+combinedList[i]);
 }
 }
}

[0]=1
[1]=2
[2]=3
[3]=4
[4]=5
[5]=6

This means that the algorithm above will operate on a source list which has within it two sub-portions,
analogous to our two lists in the example above, which are each made up of elements in numerical
ascending order.
These two portions of the overall list must be integrated in order into a new temporary array and then
the elements of the temporary array must be copied back into the original array.
This process is somewhat complex so let's examine each part of the overall algorithm the method
must complete:

• Step 1: Create a temporary Array representing the elements of the source array to be merged.
• Step 2: Merge the elements of the temporary array back into the source array, until one of the

sub-sections runs out of elements to be merged.
• Step 3: Copy all the remaining elements in the temporary array that did not run out of elements

back into the source array.
The method is now complete.
Before looking at JAVA code to accomplish this, examine the process visually:

In this example, a single list is split into two "virtual" lists.
As you can see the first three elements starting at index 0,
and the next three elements, starting at index 3 are each
in ascending numerical order.
The algorithm that we are writing will integrate these two
sub-lists into a single list that is then completely sorted
into ascending order.
The process is the same as before, comparing the first
elements in each list, then copying the lower value into
the ordered list. Another way to look at this is a series of
comparisons.
Step 1: In the
first iteration of a
loop within the
algorithm the
elements at
index 0 and
index 3 are
compared. Since
the element at index 3 has the lower value, it is copied
into the new list in the first position.
Step 2: In the next iteration, the elements at indexes 0
and 4 are compared because the value from index 3 has
already been used. The element at index 0 has the lower
value so it is copied to index 1 of the new list.
Steps 3-5: The process continues as show in the diagram,
copying the next lowest element until one list has no more
elements to copy.
It is at this point that the algorithm moves on to copying
the remaining elements from the list that has not run out
of elements.
Each of the remaining elements is copied. In this example
there is only the final element at index 5 to copy to the
final position.

 List
(Before Merge)

 List
(After Merge)

 2 1
List 1 3 2

 5 3
 1 4

List 2 4 5
 6 6

1st

2nd

3rd

4th

5th

6th

1st Compare:
Index Value

0 2
To
Index Value

3 1

2nd Compare:
Index Value

0 2
To
Index Value

4 4

3rd Compare:
Index Value

1 3
To
Index Value

4 4

4th Compare:
Index Value

2 5
To
Index Value

4 4

5th Compare:
Index Value

2 5
To
Index Value

5 6

Original Array
Index Value

0 2
1 3
2 5
3 1
4 4
5 6

New Array
Index Value

0 1
1 2
2 3
3 4
4 5
5 6

Becomes

When writing the actual code, it is important to understand the goals for the method. The result of this
method will be to have the elements specified by the parameters of the method call merged back into
the source array. It is also important to remember that the method will generally only be “merging”
part of the source array, not the entire array as is illustrated in the example above.
We will begin by looking at the method header:

The merge method step-by-step:
Step 1: Input Parameters–

Part of sourceArray contains two lists that need to be integrated in ascending numerical order using
the merge algorithm. The index of the first list is represented by leftStart. The index of the
beginning of the second list is represented by middleIndex. The first list must end before the second
list starts, so middleIndex also represents the upper limit to the first list. Finally, the index of the end
of the second list is given by rightEnd.

Step 2: Getting Ready–
In order to make sure that the method
doesn't corrupt the sourceArray once
the merge begins; a verification check
is done to make sure that the second
list falls within the bounds of the array
in lines 01 to 03.
If rightEnd falls outside the bounds of
the array then lines 04 to 06 sets it to
the actual end of the array.
Line 07 creates tempArray so that the

elements to be merged from sourceArray can be copied in lines 08 to 10 into it using the same
indexes for each element.

public static void merge(int[] sourceArray, int leftStart, int middleIndex, int rightEnd)

The array with the
elements to “merge”

Index of the first element
in the 1st sub-list.

Index of the first element in the 2nd sub-list.
(Also represents the end of the 1st sub-list)

Index of the last element
in the 2nd sub-list.

01 if (middleIndex>=sourceArray.length) {
02 return;
03 }
04 if (rightEnd>=sourceArray.length) {
05 rightEnd=sourceArray.length;
06 }
07 int[] tempArray=new int[sourceArray.length];
08 for (int i=leftStart; i<rightEnd; i++) {
09 tempArray[i]=sourceArray[i];
10 }

public static void merge(int[] sourceArray, int leftStart, int middleIndex, int rightEnd)

Step 3: The Merge Loop–
Lines 01 to 03 initialize the
variable leftIndex with
the leftStart value,
rightIndex with the
middleIndex value, and
the index of where to
place the next lowest
value back into the
sourceArray into the
variable
currentCopyIndex from
leftStart.
leftIndex represents the
current index of the next position to compare from the 1st sub-list, rightIndex the current index of
the next position to compare from the 2nd sub-list, and currentCopyIndex is where the next value
should be placed back into the sourceArray.
The while loop on line 04 iterates so long as leftIndex is less than middleIndex (which represents
the end of the 1st sub-list) and rightIndex is less than rightEnd (which represents the end of the
2nd sub-list).
Within the loop, line 05 compares the values stored in tempArray at the indexes leftIndex and
rightIndex. If the value at leftIndex is lower, then line 06 copies the value from tempArray at
leftIndex back into sourceArray at the index stored in currentCopyIndex, and then line 07
increments leftIndex so that the next compare happen to the next element in that part of the list. If
the value at leftIndex is not lower, then line 09 copies the value from tempArray at rightIndex
back into sourceArray at the index stored in currentCopyIndex, and then line 10 increments
rightIndex so that the next compare happens to the next element in that part of the list. Finally line
12 increments currentCopyIndex. Remember that the loop in line 07 will end when either index
variable reaches the end of its associated sub-list.
Step 4: Copy the Remaining Elements–
Only one of the two while
loops will actually execute
because the one of the index
variables will have reached
the end of it's associated sub-
list.
The other while loop will
continue to copy any
remaining elements from the
other sub-list from tempArray
back into sourceArray.

01 int leftIndex=leftStart;
02 int rightIndex=middleIndex;
03 int currentCopyIndex=leftStart;
04 while(leftIndex<middleIndex && rightIndex<rightEnd) {
05 if (tempArray[leftIndex]<tempArray[rightIndex]) {
06 sourceArray[currentCopyIndex]=tempArray[leftIndex];
07 leftIndex++;
08 } else {
09 sourceArray[currentCopyIndex]=tempArray[rightIndex];
10 rightIndex++;
11 }
12 currentCopyIndex++;
13 }

while (leftIndex<middleIndex) {
 sourceArray[currentCopyIndex]=tempArray[leftIndex];
 leftIndex++;
 currentCopyIndex++;
}
while (rightIndex<rightEnd) {
 sourceArray[currentCopyIndex]=tempArray[rightIndex];
 rightIndex++;
 currentCopyIndex++;
}

Now that we have a functional merge method (our “conquer” half of the “divide and conquer” solution)
it is time to address the “divide” part of the algorithm.
Remember that the merge method only merges lists that are made up of elements that are already in
sorted ascending order. The divide part of our algorithm will guarantee that we only merge lists that
are already sorted by combining lists which start with only one element in them (by definition, these
two lists must each be in ascending order of course!). The resulting list will have two elements in
sorted order so that list can then be combined with another list in ever growing sizes until the whole
list has been sorted successfully.
Let's examine this process in a sample list:
First the list is broken up into sub-lists of one element each, and the two lists are "merged" with the
process repeated for each pair of elements in the list:
1st Merge 2nd Merge 3rd Merge 4th Merge 5th Merge 6th Merge 7th Merge 8th Merge

3 2 1 4 13 10 12 15 9 6 11 7 5 14 8 16

List After Merges
2 3 1 4 10 13 12 15 6 9 7 11 5 14 8 16

The process is repeated by this time each sub-list has two elements, so the resulting merged list has
four elements:

1st Merge 2nd Merge 3rd Merge 4th Merge

2 3 1 4 10 13 12 15 6 9 7 11 5 14 8 16
List After Merges

1 2 3 4 10 12 13 15 6 7 9 11 5 8 14 16
Notice that each iteration of the process, the size of the merged list doubles. In this next iteration
each sub-list has four elements and the resulting merged list will have 8 elements:

1st Merge 2nd Merge

1 2 3 4 10 12 13 15 6 7 9 11 5 8 14 16
List After Merges

1 2 3 4 10 12 13 15 5 6 7 8 9 11 14 16
In the next iteration the list will be completely sorted:

1st Merge

1 2 3 4 10 12 13 15 6 7 9 11 5 8 14 16
List After Merges

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
And the list is sorted!

Writing the JAVA code:
This portion of the algorithm will be calling the merge method so recall the method signature is:

Now all that remains in to write the JAVA code that implements this portion of the Merge Sort
algorithm.
Nested for loops with a call to the merge method will complete the algorithm.

The outer loop tracks the size of each sub-list to be merged using blockSize which doubles with
each iteration.
The inner loop calculates the start position for each merge using blockSize. The merge method gets
called passing the inner loop's leftIndex as the first parameter (leftStart),
leftIndex+blockSize as the second parameter (middleIndex), and leftIndex+2*blockSize as
the final parameter (rightEnd).
Let's examine the values for the sample run from the previous page to see how these loops would call
the merge method:

blockSize
leftIndex

(leftStart)
leftIndex+blockSize

(middleIndex)
leftIndex+2*blockSize

(rightEnd)
merge(arr, leftIndex, leftIndex+blockSize,

leftIndex+2*blockSize);
1
 0 1 2 merge(arr, 0, 1, 2);
 2 3 4 merge(arr, 2, 3, 4);
 4 5 6 merge(arr, 4, 5, 6);
 6 7 8 merge(arr, 6, 7, 8);
 8 9 10 merge(arr, 8, 9, 10);
 10 11 12 merge(arr, 10, 11, 12);
 12 13 14 merge(arr, 12, 13, 14);
 14 15 16 merge(arr, 14, 15, 16);

2
 0 2 4 merge(arr, 0, 2, 4);
 4 6 8 merge(arr, 4, 6, 8);
 8 10 12 merge(arr, 8, 10, 12);
 12 14 16 merge(arr, 12, 14, 16);

4
 0 4 8 merge(arr, 0, 4, 8);
 8 12 16 merge(arr, 8, 12, 16);

8
 0 8 16 merge(arr, 0, 8, 16);

All that remains is to put it all together into one JAVA program!

public static void merge(int[] sourceArray, int leftStart, int middleIndex, int rightEnd)

for (int blockSize=1; blockSize<arr.length; blockSize*=2) {
 for (int leftIndex=0; leftIndex<arr.length; leftIndex+=2*blockSize) {
 merge(arr, leftIndex, leftIndex+blockSize, leftIndex+2*blockSize);
 }
}

Here is the complete MergeSort.java program with sample data:

Console Output:

public class MergeSort {
 public static void main(String[] args) {
 int[] arr={3,2,1,4,13,10,12,15,9,6,11,7,5,14,8,16};
 System.out.println("Before:");
 listArray(arr);
 mergeSort(arr);
 System.out.println("After:");
 listArray(arr);
 }
 public static void listArray(int[] arr) {
 System.out.print("{");
 for (int i=0; i<arr.length-1; i++) {
 System.out.print(arr[i]+", ");
 }
 System.out.println(arr[arr.length-1]+"}");
 }
 public static void mergeSort(int[] arr) {
 for (int blockSize=1; blockSize<arr.length; blockSize*=2) {
 for (int leftIndex=0; leftIndex<arr.length; leftIndex+=2*blockSize) {
 merge(arr, leftIndex, leftIndex+blockSize, leftIndex+2*blockSize);
 }
 }
 }
 public static void merge(int[] sourceArray, int leftStart, int middleIndex, int rightEnd) {
 if (middleIndex>=sourceArray.length) {
 return;
 }
 if (rightEnd>=sourceArray.length) {
 rightEnd=sourceArray.length;
 }
 int[] tempArray=new int[sourceArray.length];
 for (int i=leftStart; i<rightEnd; i++) {
 tempArray[i]=sourceArray[i];
 }
 int leftIndex=leftStart;
 int rightIndex=middleIndex;
 int currentCopyIndex=leftStart;
 while(leftIndex<middleIndex && rightIndex<rightEnd) {
 if (tempArray[leftIndex]<tempArray[rightIndex]) {
 sourceArray[currentCopyIndex]=tempArray[leftIndex];
 leftIndex++;
 } else {
 sourceArray[currentCopyIndex]=tempArray[rightIndex];
 rightIndex++;
 }
 currentCopyIndex++;
 }
 while (leftIndex<middleIndex) {
 sourceArray[currentCopyIndex]=tempArray[leftIndex];
 leftIndex++;
 currentCopyIndex++;
 }
 while (rightIndex<rightEnd) {
 sourceArray[currentCopyIndex]=tempArray[rightIndex];
 rightIndex++;
 currentCopyIndex++;
 }
 }
}
 Before:

{3, 2, 1, 4, 13, 10, 12, 15, 9, 6, 11, 7, 5, 14, 8, 16}
After:
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

