

In the science of computer programming it is quite possible that recursion may be the single hardest
topic to both understand and master. In this lesson the conceptual basis for recursion will be
introduced and a very simple mathematical problem will be solved using traditional loops and
recursion to demonstrate the difference between the two programming algorithms.
A common definition of recursion in programming is the process of solving a problem by successively
solving smaller instances of the same problem.
For our purposes at this stage recursion will take the place of the traditional loop structures for and
while.
First let us examine a traditional solution to a simple math problem. A factorial is written in the form 𝑛!
where 𝑛 is a non-negative integer. To solve 𝑛! when n=4, one solves 4×3×2×1 = 24.
How would this be solved in a JAVA method?
The following method solves 𝑛! using a simple for
loop and accumulator. If n=5, the loop iterator
variable i starts with the value 5, and iterates down
to 1. In each iteration of the loop the accumulator
Result is multiplied by the current value of i so
one could write:
Result=4*3*2*1;
Now let's examine the same method using
recursive techniques.
The first thing you should notice is that this solution
doesn't have a traditional loop. The second item of
note should be the line of code:
return n*factorialR(n-1);
It is this line of code that makes this a recursive
algorithm!

Lets follow this code for the method call factorialR(4):

public static int factorial(int n) {
 int result=1;
 for (int i=n; i>=1; i--) {
 result*=i;
 }
 return result;
}

public static int factorialR(int n) {
 if (n>1) {
 return n*factorialR(n-1);
 } else {
 return 1;
 }
}

public static int factorialR(int n) {
 if (n>1) {
 return n*factorialR(n-1);
 } else {
 return 1;
 }
}

n=4

public static int factorialR(int n) {
 if (n>1) {
 return n*factorialR(n-1);
 } else {
 return 1;
 }
}

n=3

public static int factorialR(int n) {
 if (n>1) {
 return n*factorialR(n-1);
 } else {
 return 1;
 }
}

n=2

public static int factorialR(int n) {
 if (n>1) {
 return n*factorialR(n-1);
 } else {
 return 1;
 }
}

n=1

Since n=1, this is
not executed!

The "Base Case" has
been reached, the first

return occurs!

1

Returns the value 1

Returns 2*1=2

Returns 3*2=6

Returns
4*6=24

