
WHAT SHOULD BE IN YOUR NUMBERSPROJECT
The actual name of the JavaProject that you use won't matter, in this example, it is called
"NumbersProject" but you can use any name you like!
Below is a picture of what you should see if you open the disclosure arrows as shown for your project:

For each letter you see, there is an entry explaining what the
entry represents.
If your project doesn’t have an entry or the entry is different
ask for assistance!

When the assignment is due, you will be given a new
version of testLib.jar to put in your project and if it can't
run successfully because your project doesn't match the

expected layout, you will receive a grade of “F.”
Please be aware that some entries must match exactly what
is shown on the right while others can be different!
The items that must match exactly have bold letters next to
them!

A. The Project Folder Name.
You can call your project anything you want so this name doesn’t need to match the name
shown!

B. The src Folder.
Every project should have a folder named src (src stands for source) that contains the
packages that in turn contain the source code that makes up your project.

C. The (default package) package.
The default package should contain any classes that you have written that contain a main()
method. The contents of your default package may contain more items than those shown!

D. The NumberClassification.java class file.
The exact name of
this file doesn’t matter.
This file should
contain the main()
method with the code
in it that will output
the numbers from 0
to 100, identifying if
each number is even,
prime, a self-divisor,
and palindromic.
You can see required
import statement and
JavaDoc code that
should be part of your
program.
This is followed by
partial code that
might be in your
program.

A

B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

01 import myLib.Numbers;
02 /**
03 * A program description goes here!
04 *
05 * @author Last, First (Period X)
06 * @version Last Modified MM/DD/YYYY
07 */
08 public class NumberClassification {
09 public static void main(String[] args) {
10 int num=0;
11 while (num<=100) {// Loop through the numbers 0-100
12 System.out.print(num);
13 if (Numbers.isEven(num)) {
14 System.out.print(" is even");
15 }
16 System.out.println(".");
17 num=num+1;
18 }
19 }
20 }

E. The RandomNumber.java class file.
The exact name of this file doesn’t
matter. This file should contain the
main() method shown the right:

F. The myLib package.
It is absolutely critical that this
entry is spelled precisely as shown
with no extra characters and each letter having the correct case (capital or lower case).

G. The Numbers.java class file.
When the disclosure arrow is pointing down as shown in the diagram, you can see an entry
indented below it that shows the names of any classes that are part of this source file. There
should only be one entry, the Numbers class!

H. The Numbers class.
Indented to show that it is part of the Numbers.java file, you should check the spelling of this
entry closely! It must have the exact name and each letter must have the correct case.
When the disclosure arrow is pointing down in a class entry in the project explorer, indented
below it you will find each of the methods (and other items that we will learn more about later)
listed.
Each entry will have:

• Keyword indicator symbol: Methods that are public and static should have this symbol:
• The method name.
• The type of each parameter in parenthesis.
• A colon and then the return type for the method.

I. The isEven(int) : boolean method.
Your entry must match exactly!

J. The isPalindromic(int) : boolean method.
Your entry must match exactly!

K. The isPrime(int) : boolean method.
Your entry must match exactly!

L. The isSelfDivisor(int) : boolean method.
Your entry must match exactly!

M. The randomNumber(int, int) : int method.
This method won’t be used for this test, but will be used later so your entry must match exactly!

N. The JRE System Library entry.
Every project should have this entry. Note that the text in brown square brackets following the
word Library will likely be different.
You should check to make sure it does not say end in a number below 4!
This indicates that you did not select the current Java Runtime Environment when you created
the project or that your system does not have a current version of the Java Runtime
Environment installed.

O. The Referenced Libraries entry.
If you don’t see this entry in your project then you have not yet put the testLib.jar file in your
project or have not yet added that file to your build path.
See below for instruction about how to do this.

P. The testLib.jar entry.
If you don’t see this entry in your project then you have not yet put the testLib.jar file in your
project or have not yet added that file to your build path.
See instructions on the next page about how to do this.

01 import testLib.Test;
02 public class RandomNumber {
03 public static void main(String[] args) {
04 Test.testRandomNumber(1000,null);
05 }
06 }

Getting Ready to Grade Your Project
Before you can begin using the test unit you will have to follow these basic steps:

• Connect to the NAS Server and navigate to the Libraries folder on the AP_CompSci share and
verify that you can see these files:

MethodsAssignment2TestUnit.java
testLib.jar

• If you don’t already have testLib.jar in your project, follow the steps for “Adding
testLib.jar to your project.”

• If you already have testLib.jar in your project, follow the steps for “Updating testLib.jar
in your project.”

• Then follow the steps for “Adding MethodsAssignment2TestUnit.java to your project.”

Adding testLib.jar to Your Project
1. In the window that shows the files for AP_CompSci/Libraries

select the file testLib.jar:
2. Copy the file using the appropriate keyboard shortcut or by right-clicking and selecting

“copy“ from the pop-up contextual menu.
3. Switch back to eclipse and select the src folder.
4. Use the appropriate keyboard shortcut, to paste the file into your project or right-click the src

folder and select “paste” from the pop-up contextual menu.
5. Right-click the testLib.jar

file, then select “Build Path”
and “ Add to Build Path” from
the pop-up contextual menu.

You are now ready to add the testing class to your project, so skip to the “Adding
MethodsAssignment2TestUnit.java to your project.” section.

Updating testLib.jar in Your Project
1. In the window that shows the files for AP_CompSci/Libraries

select the file testLib.jar:
2. Copy the file using the appropriate keyboard shortcut or by right-clicking and selecting

“copy“ from the pop-up contextual menu.
3. Switch to eclipse, right-click the testLib.jar file

then select “paste” from the pop-up contextual
menu.

4. Click the “Yes” button in the dialog to
overwrite the old testLib.jar file.

You are now ready to add the testing class to your project, continue on to the “Adding
MethodsAssignment2TestUnit.java to your project.” section.

Adding MethodsAssignment2TestUnit.java to your project
1. In the window that shows the files for AP_CompSci/Libraries select

the file MethodsAssignment2TestUnit:
2. Copy the file using the appropriate keyboard shortcut or by right-clicking and selecting

“copy“ from the pop-up contextual menu.
3. Switch to eclipse, right-click the (default package)

package then select “paste” from the pop-up
contextual menu.

4. Open the MethodsAssignment2TestUnit class. If you
don’t see any errors, you are ready to run the test unit.
If you do see any errors, you likely have not followed
all the steps and checked all the files closely on the
prior pages of this document!

You are now ready run the MethodsAssignment2TestUnit class main() method.
Running MethodsAssignment2TestUnit class main() method

• Click the run button, you will see output in the console window like this:

• Look for lines that show a score of less than 4/4. Check to columns for expected and actual

value for each of your methods to identify which of your methods is returning an incorrect value.
• You now know what exact test value you should use to identify and fix the problem in your

code!

Testing Class: myLib.Numbers, methods: isEven(int), isPalindromic(int),
isSelfDivisor(int), isPrime(int)
e=Expected, a=Actual
 Value eEven aEven ePalin aPalin eSelfD aSelfD ePrime aPrime #
Pass/Possible
 -2147483648 true true false true false true false true 1/4
 -1 false true false true false true false true 0/4
 0 true true true true true true false true 3/4
 1 false true true true true true false true 2/4
 2 true true true true true true true true 4/4
 3 false true true true true true true true 3/4
 4 true true true true true true false true 3/4
 19 false true false true false true true true 1/4
 20 true true false true false true false true 1/4
 21 false true false true false true false true 0/4
 22 true true true true true true false true 3/4
 23 false true false true false true true true 1/4
 99 false true true true true true false true 2/4
 100 true true false true false true false true 1/4
 101 false true true true false true true true 2/4
 2146226412 true true true true true true false true 3/4
 2146226413 false true false true false true true true 1/4
Score: 31/68

